Atome in Bewegung: 0,000000000000001 s in Zeitlupe
Mit der Filmkamera beobachten, wenn sich zwei Atome verbinden? Eigentlich geht das nicht. Zum einen sind Atome unglaublich klein, was extrem hohe Auflösungen erfordert. Zudem laufen die Prozesse enorm schnell ab, was teure Pulslaser erfordert. Jetzt hat ein Forscherteam mit Elektronenblitzen einen Film über die Strukturänderung in einem Molekül gedreht.
Es dürfte der Traum eines jeden Chemikers sein, den rasend schnellen Strukturänderungen im Molekül zuzuschauen. Nun ist der Chemikertraum Wirklichkeit geworden. Ein internationales Forscherteam, an dem auch Wissenschaftler des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) in Hamburg beteiligt waren, hat eine Art Molekülkamera konstruiert. Mit dieser Kamera können die Forscher detailliert und in Zeitlupe beobachten, wie sich Atome bei einem molekularen Übergang in einem komplexen Material bewegen.
Femtosekunde hat 14 Nullen hinter dem Komma
Das ist nicht trivial, denn die Atombewegungen laufen in einer Zeitspanne ab, die das Licht braucht, um den Durchmesser eines Haares zu durchqueren. Die Forscher messen diese Zeitspanne in Femtosekunden.
Stehen bei einer Millisekunde zwei Nullen hinter dem Komma, so sind es bei einer Femtosekunde 14 Nullen. Macht 0,000000000000001 s. Diese extrem kurze Zeitspanne und die geforderte Auflösung stellte das Forscherteam um den Chemieprofessor und Direktor des MPSD, Dwayne Miller, vor enorme Herausforderungen.
Grenzauflösung von einem Zehntelnanometer
Sie mussten ihre Molekülkamera mit einer Grenzauflösung von mindestens einem Zehntelnanometer ausstatten. „Würde man einen Apfel bis auf den Durchmesser der Mondumlaufbahn vergrößern, dann wäre eines seiner Atome so groß wie der ursprüngliche Apfel“, veranschaulicht Stuart Hayes das Problem. Der Forscher aus Schottland leitet in Millers Abteilung das Team, dem nun das erste Video eines chemischen Atomballetts gelungen ist.
Filmkamera mit Femtosekunden-Elektronenblitz
Millers Team benutzt für die Filmkamera einen ultrakurzen Femtosekunden-Elektronenblitz. Elektronen können die Lage der Atome in Molekülen direkt abbilden. Diese Elektronenblitze lassen sich zudem ganz einfach und in kompakten Geräten erzeugen. „Das sind echte Tischexperimente“, sagt Stuart Hayes. „Trotzdem sind unsere Elektronenkanonen so hell, dass sie die molekulare Struktur in einem einzigen Schuss einfangen können“, ergänzt Miller. Vorhandene physikalische Probleme mit Elektronenblitzen lösten die Forscher, indem sie die Flugzeit der Elektronenwolke verkürzten, die Elektronenzahl optimierten und eine Art Optik für Elektronen bauten.
Mit ihrer Molekülkamera haben die Forscher nun ein neues Material untersucht, das am japanischen RIKEN-Forschungsinstitut entwickelt wurde. Dieses Material kann durch Temperatur oder Druck in seinen elektrischen Eigenschaften zwischen isolieren und metallisch leitend umgeschaltet werden.
Japanische Forscher fanden kürzlich heraus, dass sich dieser Phasenübergang gleichermaßen durch Laserlicht erzeugen lässt. Und genau bei diesem Phasenübergang haben Miller und sein Team nun in Zeitlupe zugeschaut.
„Wir sehen Atome in ihrer Bewegung ganz klar“
„Wir sehen diese Atome in ihrer Bewegung ganz klar“, schwärmt Miller, „wie Sterne am Nachthimmel.“ Sie konnten erstmals sehen, dass nur bestimmte Atomgruppen im Kollektiv wenige, koordinierte Schlüsselbewegungen machen, um die Materialeigenschaften zu verändern. So sind die zigtausend Möglichkeiten auf ein paar wenige, einfache und grundlegende Tanzfiguren des atomaren Balletts reduziert.
Miller benutzt ein Analogiebild: Er vergleicht das Spielfeld der Möglichkeiten einer chemischen Reaktion mit Tausenden von involvierten Atomen mit einer imposanten Berglandschaft. Dabei repräsentieren die Täler in dieser Landschaft verschiedene, stabile Molekülstrukturen. Bei einer Strukturänderung muss die zu ändernde Struktur über die Gipfel der Berge hinüber in eines der Nachbartäler. „Dabei reduzieren sich die vielen Möglichkeiten auf einen Passpfad, der am besten zugänglich ist“, erklärt Hayes.
Ein Beitrag von: