Leistungsstarker Wärmespeicher für den Bau?
Ein neues Material zur Speicherung von latenter Wärme könnte dabei helfen, Häuser energetisch deutlich zu verbessern. Die Zusätze, die dem Material seine Festigkeit und erhöhte Wärmeleitfähigkeit verleihen, können aus Reishülsen gewonnen werden.
Forschende der Martin-Luther-Universität Halle-Wittenberg (MLU) und der Universität Leipzig haben ein als Latentwärmespeicher nutzbares Material entwickelt und darüber soeben in einer wissenschaftlichen Fachzeitschrift berichtet. Mit ihm lässt sich überschüssige Wärme speichern und bei Bedarf wieder an die Umgebung abgeben. Im Gegensatz zu bereits bekannten Stoffen kann das neue Material nach Angaben der Hochschulen deutlich mehr Wärme aufnehmen, ist stabiler und besteht aus unbedenklichen Substanzen.
Latentwärmespeicher können durch einen Wechsel des Aggregatzustands von fest zu flüssig sehr viel Wärme aufnehmen. Erhärtet das Material, wird dabei die gespeicherte Wärme wieder abgegeben. „Das Prinzip kennen viele von Handwärmekissen“, sagt Prof. Dr.-Ing. Thomas Hahn vom Institut für Chemie der MLU.
Latentwärmespeicher für die Bauindustrie
Die Erfindung aus Halle soll aber nicht in Manteltaschen zum Einsatz kommen, sondern zum Beispiel in der Bauindustrie. Dort könnte sie in Form großer Platten in Wände integriert werden, die so während der Sonnenstunden am Tag Wärme aufnehmen und später bei niedrigeren Temperaturen wieder abgeben können.
So ließe sich viel Energie sparen: Das neue Material speichert den Berechnungen der Forschenden zufolge bei einer Aufheizung von zehn Grad Celsius des Materials bis zu 24 Mal mehr Wärme als herkömmlicher Beton oder Gips.
Gerüst aus Silikat
Anders als bei Handkissen schmelzen die Platten aus dem Stoffgemisch jedoch nicht, wenn sie Wärme aufnehmen. „Der eigentlich flüssige Wärmespeicher ist in unserer Entwicklung in einem Gerüst aus festem Silikat eingeschlossen und kann durch hohe Kapillarkräfte nicht austreten“, erklärt Hahn.
Für die Herstellung kommen vor allem umweltverträgliche Stoffe zum Einsatz: ungefährliche Fettsäuren, wie sie in Seifen und Cremes vorkommen. Die verwendeten Zusätze, die dem Material seine Festigkeit und erhöhte Wärmeleitfähigkeit verleihen, können aus Reishülsen gewonnen werden.
Schritte zum Verständnis des Materials und zur Herstellung im industriellen Maßstab
In der aktuellen Studie beschreibt das Team Schritt für Schritt, wie sich die Struktur des Materials bildet und wie sich die genutzten Chemikalien gegenseitig beeinflussen. Unterstützung erhielt das Team hierbei von den Forschenden um Prof. Dr. Kirsten Bacia von der MLU, die den Mechanismus mittels Fluoreszenzmikroskopie sichtbar gemacht haben. „Das Wissen darüber ist für die weitere Optimierung und auch für eine mögliche Produktion im industriellen Maßstab wichtig“, sagt Felix Marske, der die Entwicklung im Rahmen seiner Promotion bei Thomas Hahn vorantrieb.
Noch findet die Produktion nämlich in kleinen Mengen im Labor statt. Das neue Material könnte künftig aber nach Ansicht der Forschenden in Kombination mit weiteren Schritten dabei helfen, Gebäude energetisch deutlich effizienter zu gestalten oder auch Photovoltaik- und Batteriesysteme passiv zu kühlen, um deren Wirkungsgrade weiter zu erhöhen.
Zum Patent angemeldet
Das Herstellungsverfahren wurde bereits zum Patent angemeldet. Die Arbeit der Forschenden wurde zudem mehrfach ausgezeichnet: 2019 erhielt das Team den Hugo-Junkers-Preis des Landes Sachsen-Anhalt, 2020 den „Clusterpreis Automotive“ des IQ Innovationspreises Mitteldeutschland.
Das könnte Sie auch interessieren:
Kreislaufwirtschaft: Erstes deutsches Zementwerk mit CO2-Abscheideanlage
Nachhaltige Zementherstellung: Grünes Licht für CO2-Abscheidung im Industriemaßstab
Treibhausgasemissionen verringern: Weltweit ersten solaren Zementklinker produziert