Chancen für die Wirtschaft souverän nutzen
Ein Whitepaper der Plattform Lernende Systeme zeigt, unter welchen Bedingungen die deutsche Wirtschaft die Chancen von großen KI-Sprachmodellen nutzen kann.
Große KI-Sprachmodelle, die Text oder Programmcodes generieren, können die Wettbewerbsfähigkeit und Innovationskraft der deutschen Wirtschaft enorm steigern. Allerdings stammen gegenwärtig die fortgeschrittensten generativen KI-Modelle aus den USA und China – und erfüllen zumeist nicht die in Europa diskutierten ethischen und rechtlichen Anforderungen. Ein aktuelles Whitepaper der Plattform Lernende Systeme verdeutlicht anhand von Praxisbeispielen die Chancen sowie Herausforderungen der Sprachmodelle und analysiert, unter welchen Bedingungen Unternehmen souverän und rechtssicher das Potenzial der Technik heben können. Die Experten empfehlen den Aufbau eines offenen, kommerziell nutzbaren Datensatzes in deutscher Sprache, der europäischen Werten und Regeln entspricht und die Entwicklung von Sprachmodellen in Deutschland unterstützt.
Prof. Volker Tresp, Ludwig-Maximilian-Universität München: „Aus der Perspektive der KI-Forschung stellen große Sprachmodelle einen bedeutenden technologischen Durchbruch dar. Sie erschließen die Intelligenz der Sprache.“
Das wirtschaftliche Potenzial generativer KI-Sprachmodelle ist enorm. Die Technik verspricht beispielsweise einen verbesserten Zugang zum Unternehmenswissen für Beschäftigte sowie die Automatisierung von repetitiven und fehleranfälligen Prozessen wie der Verarbeitung von Geschäftsdokumenten. In der Medizin können generative KI-Modelle eine präzisere Vorhersage von Krankheitsverläufen unterstützen sowie Fachkräfte im Gesundheitswesen bei Dokumentation und administrativen Aufgaben entlasten.
„Aus der Perspektive der KI-Forschung stellen große Sprachmodelle einen bedeutenden technologischen Durchbruch dar. Sie erschließen die Intelligenz der Sprache. Sie ermöglichen Lösungen, die vorher jenseits der technologischen Möglichkeiten waren, und heute bereits als selbstverständlich erscheinen“, sagt Volker Tresp, Professor für maschinelles Lernen der Ludwig-Maximilian-Universität München und Leiter der Arbeitsgruppe Technologische Wegebereiter und Data Science der Plattform Lernende Systeme.
Potenzial und Herausforderungen für Unternehmen
Ein wichtiger Grund für die vielfältigen Anwendungsmöglichkeiten der Sprachmodelle: Die aufwändig trainierten Modelle sind wiederverwendbar und lassen sich an branchen- und unternehmensspezifische Anforderungen anpassen. Das ressourcenintensive Trainieren eines eigenen KI-Modells kann entfallen. Bei vielen Anwendungen müssen die KI-Modelle jedoch auf sensible Daten zugreifen können, in der Medizin etwa auf Patienteninformationen oder beim Einsatz in Unternehmen auf Geschäftsdaten. Nur wenige Unternehmen wären bereit, solche Daten an externe Modellanbieter herauszugeben, heißt es im Whitepaper. Für die Unternehmen sei eine rechtssichere Nutzung großer KI-Modelle wichtig. Das Modell sollte im Sinne europäischer Werte und Regeln entwickelt werden. Es sollte zudem transparent sein, welche Daten für das Training der Modelle genutzt wurden. Prominente Modelle aus USA und China erfüllen diese Anforderungen überwiegend nicht. Zudem verfügen außereuropäische KI-Modelle lediglich über einen vergleichsweise geringen Anteil deutscher Textdaten im Trainingsdatensatz, was zu Fehlern in den generierten deutschen Texten führen kann.
Rechtssichere, deutschsprachige KI-Modelle
Angesichts des zunehmenden Einflusses außereuropäischer Modelle bestehe ein Bedarf, Alternativen zu schaffen, um die Innovationskraft und Wettbewerbsfähigkeit in Deutschland und Europa voranzutreiben, betonen die Autoren des Whitepapers. Im Sinne der digitalen Souveränität würden Sprachmodelle für die deutsche Sprache und nach unserem Wertesysteme benötigt. Grundvoraussetzung für das Training großer Sprachmodelle seien entsprechend umfangreiche und kuratierte Trainingsdatensätze.
Alexander Löser, Berliner Hochschule für Technik: „Ein starkes Open Source-Angebot made in Germany kann neuen Wettbewerb schaffen. Dafür sind nur 20 Terabyte, also 10 Laptop-Festplatten, deutschsprachiger Daten nötig.“
„Viele Unternehmen wollen derzeit Sprachmodelle einsetzen. Leider gibt es kaum Angebote leistungsstarker deutschsprachiger Modelle. Ein starkes Open Source-Angebot made in Germany kann neuen Wettbewerb schaffen. Dafür sind nur 20 Terabyte, also 10 Laptop-Festplatten, deutschsprachiger Daten nötig. Unabdingbare Voraussetzung ist daher ein Open Source-Projekt, das diese Daten in hoher Qualität kommerziell nutzbar macht und lizenzfrei anbietet, sodass eine breite Community eine sichere KI gestalten kann“, sagt Alexander Löser, Gründer und Sprecher des Forschungszentrums Data Science an der Berliner Hochschule für Technik und Mitglied der Plattform Lernende Systeme.
Eine weitere Voraussetzung für das Training und die Anwendung großer KI-Sprachmodelle in Deutschland ist eine leistungsfähige Recheninfrastruktur. Diese sollte mit den steigenden Anforderungen an die nötige Rechenleistung für KI-Modelle mitwachsen, empfehlen die Autoren. Zudem sollten eine die KI-Community gestärkt und Talente in Forschung und Industrie mit entsprechendem KI-Wissen und Domänen-Know-how gefördert werden.
Über das Whitepaper
Das Whitepaper „Große Sprachmodelle entwickeln und anwenden. Ansätze für ein souveränes Vorgehen“ wurde von Mitgliedern der Arbeitsgruppe Technologische Wegbereiter und Data Science der Plattform Lernende Systeme verfasst. Es steht zum kostenfreien Download zur Verfügung.
Weitere Beiträge zum Thema: