Intelligente Räder für Einkaufswagen, Rollstuhl oder Krankenbett
Schwere Lasten auf Rädern entwickeln oft ihre ganz eigene Dynamik, damit soll jetzt Schluss sein. Forschende der Universität des Saarlandes haben ein System mit intelligenten Rädern und Sensorgriff entwickelt, mit dem sich Rollstühle, Einkaufswagen oder Fahrradanhänger ganz einfach manövrieren lassen.
Eine äußerst praktische Erfindung stellen Professor Matthias Nienhaus und sein Team von der Universität des Saarlandes auf der Hannover Messe 2023 vor. Ihre neue Technologie aus intelligenten Rädern und einem Sensorgriff ermöglicht leicht manövrierbare Rollstühle, Rollatoren oder Krankenbetten. Das System lässt zudem Einkaufswagen und Fahrradanhänger flink um die Ecke gleiten und macht den Weg frei für Trolleys und Bollerwagen, mit denen man auch schwere Lasten ziehen und schieben kann.
Der Physik der Trägheit entgegenwirken
Wer schon einmal einen Einkaufswagen mit mehreren Sack Zement im Baumarkt zur Kasse schieben wollte, kennt das Problem: Der Wagen wird äußerst störrisch und mag nicht mehr so, wie man selbst gerne möchte. Es sieht dann nicht mehr wirklich elegant aus, wenn man damit um die Ecke und zur Kasse biegen möchte. Die Physik der Trägheit schickt einen in die andere Richtung. Und hat der Wagen erst einmal Fahrt aufgenommen, ist er nur schwer wieder zu stoppen oder zu lenken.
Auch in anderen Bereichen des täglichen Lebens kann die Benutzung von Fahrzeugen oder Hilfsmitteln zu einer Herausforderung werden. Gerade im Pflegebereich oder im Krankenhaus stellt der Transport von Patienten auf Krankenbetten oder in Rollstühlen für die Pflegerinnen und Pfleger eine große Hürde dar und ist oft äußerst mühsam. An steilen Hängen ist die Benutzung eines Kinderwagens, Rollators oder Rollstuhls oft fast nicht mehr möglich, zu schwierig wird der Weg nach oben. Ein neues System, das vom Forschungsteam um Professor Nienhaus an der Universität des Saarlandes entwickelt wurde, soll hier für Abhilfe sorgen.
Technische Innovation hilft beim Manövrieren
Mit einer technischen Innovation, die aus einem Zusammenspiel von intelligenten Rädern und einem Sensorgriff besteht, wollen die Forschenden allen Menschen, die auf Räder angewiesen sind, das Lenken und den Transport schwerer Güter erleichtern. „Mit nur zwei Fingern kann unser System schwere Lasten sicher bewegen und manövrieren,“ erklärt Matthias Nienhhaus. Konkret funktioniert das so, erläutert Niehaus:
„Ohne zusätzliche Sensoren wissen die Räder, wann sie unterstützen müssen, zum Beispiel in Kurven oder an Steigungen, und wie viel Schubkraft erforderlich ist. Sie beschleunigen oder bremsen, drehen langsamer oder schneller, je nach Bedarf – wobei jedes Rad entweder unabhängig oder synchron mit den anderen Rädern agiert. Dazu nutzen wir die Elektromotoren in den Rädern als Sensoren. Sie liefern uns alle notwendigen Messdaten, was unser System besonders effizient und auch kostengünstig macht.“
Daten aus elektromagnetischen Antrieben helfen bei der Entwicklung
Ein wichtiger Punkt bei der Entwicklung des neuen Systems stellte die Auswertung der Daten aus den elektromagnetischen Antrieben. In mehreren Forschungsprojekten untersuchten die Wissenschaftlerinnen und Wissenschaftler zum Beispiel, wie sich das elektromagnetische Feld an bestimmten Stellen im Motor verteilt und wie es sich beim Drehen des Rades verändert. Im Laufe des Projekts sammelten die Forschenden unzählige Messwerte, die in den elektrischen Antrieben der Räder beim Drehen auftreten und ordneten sie bestimmten Motorzuständen und Radpositionen zu.
Im zweiten Schritt ging es um die Interpretation der Daten, denn die Ingenieure können darin eine Reihe von Dingen erkennen. So verraten ihnen die Datenspalten zum Beispiel, wie sich die Position der Räder verändert, welche Kraft von den Antrieben ausgeht oder ob die Räder auf der einen Seite stärker als auf der anderen belastet werden. Einfach gesagt können die Forschenden aus der Masse der gesammelten Daten Signalmuster erkennen, die typischen Abläufen entsprechen.
Mit diesen Mustern und Daten können die Ingenieure mathematische Modelle und intelligente Algorithmen entwickeln, welche die verschiedenen Motorzustände genau abbilden. Das ermöglicht es, die Antriebe zu steuern oder zu überwachen, ob sie richtig arbeiten. „Wir können die Räder sehr effizient steuern und ihre Funktion im Auge behalten“, sagt Matthias Nienhaus. Er und sein Team haben ein Verfahren zum Patent angemeldet, das die Daten aus dem Motor noch aussagekräftiger macht und Störeffekte eliminiert.
Sensorgriff dient als Schnittstelle zur lenkenden Person
Das Forschungsteam hat einen Sensorgriff entwickelt, mit dem sich die Räder steuern lassen. Er wird auf der Hannover Messe vorgestellt und dient als Schnittstelle zur lenkenden Person. Diese kann ganz intuitiv die Richtung vorgeben, in die es gehen soll. Die „Master“-Steuerzentrale ist in den Sensorgriff integriert. Angebracht werden kann der Griff an jeder beliebigen Stelle eines Gerätes mit elektrischen Rädern – sei es ein Rollstuhl, ein Einkaufswagen oder ein Krankenbett.
Der Griff misst die Kräfte, die in alle Richtungen wirken. „Wir haben ein robustes und zugleich empfindliches kapazitives Messsystem erforscht, entwickelt und gebaut“, erklärt Matthias Nienhaus. So erkennt der Sensorgriff zum Beispiel, wie stark er in welchem Winkel gezogen, gedrückt, bewegt oder seitlich um seine eigene Achse gedreht wird. Das alles soll ganz intuitiv geschehen, so dass die lenkende Person auf natürliche Weise dem System mitteilen kann, welche Unterstützung sie benötigt.
Die Elektronik des Systems berechnet dann anhand der Daten aus dem Sensorgriff, ob und wie die Elektromotoren für bestimmte Räder eingreifen müssen. Sie bestimmt die Kraft, die auf das Rad aufgebracht werden muss, damit sich dieses in die gewünschte Richtung und mit der gewünschten Geschwindigkeit dreht. Über den Datenbussystem sind die Räder miteinander verbunden, so dass sie synchron zusammenarbeiten. Es können beliebig viele Räder einzeln oder als Einheit angesteuert werden. So lassen sich auch große Lasten sicher manövrieren.
Das Team der Universität des Saarlandes stellt seine Erfindung vom 17. bis 21. April auf der Hannover Messe vor (Halle 2, Stand B34).
Ein Beitrag von: