Hannover Messe 2023 31.03.2023, 10:58 Uhr

Künstliche Muskeln für Autos und Maschinen

Saarländische Forschende haben federleichte Formgedächtnisantriebe entwickelt, die wie künstliche Muskeln funktionieren. Auf der Hannover Messe präsentieren sie ihr Verfahren und sind auf der Suche nach Partnern.

künstliche Muskeln

Mit künstlichen Muskeln, Formgedächtnisdrähten aus Nickel-Titan, bauen die Forschenden kompakte technische Bauteile.

Foto: Universität des Saarlandes / Oliver Dietze

In einer Welt, in der die Technik immer kompakter wird und Raum sowie Energie kostbar sind, bringt das Forschungsteam der Professoren Stefan Seelecke und Paul Motzki von der Universität des Saarlandes eine innovative Lösung zum Vorschein. Ihre federleichten, energieeffizienten Formgedächtnisantriebe, die kaum mehr als 300 bis 400 Mikrometer im Durchmesser messen, bieten eine Alternative zu herkömmlichen Elektromotoren und -magneten. Sie können als eine Art künstliche Muskeln in Autos oder Maschinen fungieren.

Leichte Bauteile für knappen Raum

In der heutigen Zeit ist der Bedarf an kompakten Technologien immens. Ob im Auto, Flugzeug oder in anderen Maschinen und Geräten – der Platz ist begrenzt und jedes zusätzliche Gewicht zählt. Leichtere Verkehrsmittel verbrauchen weniger Treibstoff, und die Batterien von Elektroautos halten länger, wenn das Gewicht reduziert ist. Eine revolutionäre Technologie könnte in Zukunft dazu beitragen, sowohl Gewicht als auch Energieverbrauch durch kleinere und leichtere technische Bauteile zu minimieren.

Top Stellenangebote

Zur Jobbörse
Flughafen München GmbH-Firmenlogo
Ingenieur / Architekt vorbeugender Brandschutz (QE3) TD+ (w/m/d) Flughafen München GmbH
München Zum Job 
TGM Kanis Turbinen GmbH-Firmenlogo
Projektleiter (m/w/d) Bereich Service TGM Kanis Turbinen GmbH
Nürnberg Zum Job 
IMS Messsysteme GmbH-Firmenlogo
Systemingenieur (m/w/i) für Oberflächeninspektion IMS Messsysteme GmbH
Heiligenhaus Zum Job 
re-green-Firmenlogo
Projektleiter:in Dekarbonisierung Großimmobilien re-green
Menlo Systems GmbH-Firmenlogo
Ingenieur / Physiker (m/w/d) für Service und Support Menlo Systems GmbH
Planegg Zum Job 
Elektroenergieversorgung Cottbus GmbH-Firmenlogo
Ingenieur für Energienetzbetrieb (m/w/d) Elektroenergieversorgung Cottbus GmbH
Cottbus Zum Job 
Bisping & Bisping GmbH & Co. KG-Firmenlogo
Projektleiter (m/w/d) Internetkommunikation / Telekommunikation Bisping & Bisping GmbH & Co. KG
Lauf an der Pegnitz Zum Job 
Bisping & Bisping GmbH & Co. KG-Firmenlogo
Projektleiter (m/w/d) Glasfaserausbau Bisping & Bisping GmbH & Co. KG
Lauf an der Pegnitz Zum Job 
fbw | Fernwärmegesellschaft Baden-Württemberg mbH-Firmenlogo
Elektroingenieur (m/w/d) (Ingenieur für Elektrotechnik, Energie- oder Versorgungstechnik o. ä.) fbw | Fernwärmegesellschaft Baden-Württemberg mbH
Stuttgart Zum Job 
Varex Imaging Deutschland AG-Firmenlogo
Elektroniker ( m/w/d) oder Mechatroniker (m/w/d) als Teamleitung im Bereich Messtechnik Varex Imaging Deutschland AG
Stadtwerke Essen AG-Firmenlogo
Projektmanager (gn) Integrale Sanierungskonzeption Stadtwerke Essen AG
Mercer Rosenthal GmbH-Firmenlogo
Prozessingenieur Rückgewinnung (m/w/d) Mercer Rosenthal GmbH
Rosenthal am Rennsteig Zum Job 
Bundesamt für Bauwesen und Raumordnung (BBR)-Firmenlogo
Ingenieurin / Ingenieur der Fachrichtung Tiefbau (w/m/d) als Projektsachbearbeitung Bundesamt für Bauwesen und Raumordnung (BBR)
Albtal-Verkehrs-Gesellschaft mbH-Firmenlogo
Projektleiter*in Verkehrsanlagen Bauingenieur*in (m/w/d) Albtal-Verkehrs-Gesellschaft mbH
Karlsruhe Zum Job 
B. Braun Melsungen AG-Firmenlogo
Head of (w/m/d) Portfolio Development Team Pain Therapy B. Braun Melsungen AG
Melsungen Zum Job 
Gottlob Rommel GmbH & Co. KG-Firmenlogo
Projektleiter für Infrastrukturprojekte (m|w|d) mit Perspektive zum Oberbauleiter Gottlob Rommel GmbH & Co. KG
Stuttgart Zum Job 
STAWAG - Stadt und Städteregionswerke Aachen AG-Firmenlogo
Betriebsingenieur:in Wärmeanlagen (m/w/d) STAWAG - Stadt und Städteregionswerke Aachen AG
ULTRA REFLEX GmbH-Firmenlogo
Entwicklungsingenieur Kunststoff (m/w/d) Entwicklung und Optimierung von Produkten und Prozessen ULTRA REFLEX GmbH
Willstätt Zum Job 
heiden associates Personalberatung-Firmenlogo
Geschäftsführer Vertrieb für Logistikplanung - Option auf Unternehmernachfolge (m/w/d) heiden associates Personalberatung
Hamburg Zum Job 
Wirtgen GmbH-Firmenlogo
Software-Testingenieur (m/w/d) Testautomatisierung -Steuerungssoftware für mobile Arbeitsmaschinen Wirtgen GmbH
Windhagen Zum Job 

Das Forschungsteam um die Experten für intelligente Materialsysteme Stefan Seelecke und Paul Motzki arbeitet an der Universität des Saarlandes und dem Saarbrücker Zentrum für Mechatronik und Automatisierungstechnik (Zema) an der Entwicklung dieser innovativen Bauteile. Ihr Ziel ist es, diese bahnbrechenden Technologien allgemein verfügbar und zum Standard in der Industrie zu machen.

Intelligente Materialien verleihen Bauteilen künstliche Muskeln

Die Forschenden aus Saarbrücken setzen auf die Faszination intelligenter Materialien, um technischen Bauteilen künstliche Muskeln zu schenken. Diese finden Anwendung, wo immer Drehbewegungen erforderlich sind oder Schalter auf engstem Raum benötigt werden. Sie erzeugen Rotationsbewegungen, Drehmomente und Drehwinkel mit einer Kraft, die bisher nur von Motoren, Hydraulik oder Druckluft erreicht wurde.

Der Prototyp, der auf der diesjährigen Hannover Messe präsentiert wird, nutzt hauchdünne Drähte aus Nickel-Titan, die sich über Stromimpulse an- und entspannen können. Diese Formgedächtnisdrähte entwickeln auf kleinstem Raum eine beeindruckende Zugkraft. „Künstliche Muskeln aus Nickel-Titan weisen die höchste Energiedichte unter allen bekannten Antriebsmechanismen auf“, betont Professor Seelecke.

Wie funktionieren die künstlichen Muskeln?

Wie natürliche Muskeln in Aktion treten die Drähte in Kontraktion, abhängig davon, ob Strom fließt oder nicht. „Nickel-Titan besitzt ein faszinierendes Formgedächtnis“, erklärt Stefan Seelecke. „Auf einer kristallinen Ebene existieren zwei Phasen, die sich gegenseitig transformieren können. So erinnert sich die Legierung an ihre jeweils andere Form und nimmt sie wieder an, sobald sich die Temperatur ändert.“

Sobald Strom durch die Drähte fließt, erwärmen sie sich, und ihre Kristallstruktur verwandelt sich. Dadurch verkürzen sich die Drähte. Ohne Strom kühlen sie ab und kehren zu ihrer ursprünglichen Länge zurück, werden also wieder länger. Das Forschungsteam verwebt diese feinen Drähte ähnlich wie natürliche Muskelfasern, die von Natur aus in Bündeln zusammengefasst sind. „Durch die größere Oberfläche, die mehrere Drähte bieten, können sie mehr Wärme abgeben, was zu schnelleren Kontraktionen führt“, erläutert Professor Paul Motzki, der die Brückenprofessur „Smarte Materialsysteme für innovative Produktion“ zwischen der Universität des Saarlandes und Zema innehat.

Wie lassen sich die künstlichen Muskeln steuern?

Die Forschenden steuern die Drähte ähnlich wie eine Beuge- und Streckmuskulatur. Dabei verzichten sie auf zusätzliche Sensoren, was sowohl Platz als auch Energie spart. Interessanterweise fungieren die künstlichen Muskeln selbst als Sensoren des Systems. „Wenn sich die Drähte verformen, ändert sich der elektrische Widerstand. Wir können jede Verformung präzisen Messwerten zuordnen und daraus sensorische Daten ablesen“, erklärt Paul Motzki. Mithilfe dieser Messwerte modellieren und programmieren die Ingenieure schnelle und genaue Bewegungsabläufe der Drähte.

Die Forscher nutzen die steuerbaren künstlichen Muskeln, um technische Bauteile modular aufzubauen und sie unterschiedlichen Anforderungen anzupassen. Um beispielsweise eine Drehbewegung zu erzeugen, lassen sie die Drähte kontrahieren, sodass sie an einem Zahnrad ziehen. Wie bei echten Muskeln verwenden sie dabei muskuläre Gegenspieler. „Wir nutzen die Formgedächtnisdrähte als Agonist und Antagonist, als Beuger und Strecker, sodass eine Rotation in beide Richtungen möglich ist. Ein Hebel übersetzt die lineare Kontraktion in den entsprechenden Drehwinkel. Je kleiner dieser Hebel ist, desto größer ist der Rotationswinkel“, erläutert Paul Motzki. „Dabei kommt auch ein patentierter Zahnstangenmechanismus zum Einsatz, der die Linearbewegung in eine Rotation umwandelt, wie im Prototyp, den wir auf der Hannover Messe präsentieren“, fügt er hinzu.

Auf der Suche nach Partnern

Noch befindet sich die Technik der künstlichen Muskeln in der Forschungsphase, es ist aber zeitnah geplant, die Forschung in die Industriepraxis zu bringen. Dazu hat das Forschungsteam aus dem Lehrstuhl heraus die Firma mateligent GmbH gegründet. Die Chancen stehen somit gut, dass wir die neue Technologie in naher Zukunft im Einsatz sehen.

Auf jeden Fall ist sie nach Angaben der Forschenden skalierbar, so dass mit der Technik auch größere Bauteile möglich sind. Darüber hinaus verursacht das Verfahren keinen Lärm und kommt ohne zusätzliches Equipment wie Schläuche, Ventile, Pumpen oder Kompressoren aus. Und auch Seltene Erden. Das unterscheidet die Technologie zum Beispiel von Elektromotoren, pneumatischen oder hydraulischen Maschinen. Auf der Hannover Messe sucht das Forscherteam Partner, um das Verfahren für verschiedene Anwendungen weiterzuentwickeln.

Ein Beitrag von:

  • Dominik Hochwarth

    Redakteur beim VDI Verlag. Nach dem Studium absolvierte er eine Ausbildung zum Online-Redakteur, es folgten ein Volontariat und jeweils 10 Jahre als Webtexter für eine Internetagentur und einen Onlineshop. Seit September 2022 schreibt er für ingenieur.de.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.