Berechnungsingenieur – der pragmatische Zahlenakrobat
Ob Klebstoffindustrie, Brückenbau oder Automobilindustrie, der Berechnungsingenieur ist in vielen Branchen gefragt. Wichtig für diesen Beruf ist ein extrem gutes Zahlenverständnis.
Wie reagiert eine Straße, wenn jeden Tag 100 Lastwagen über sie hinwegrollen? Wie wird die Tragkraft eines Klebers berechnet und wie muss eine Brücke konstruiert sein, damit sie der Strömung Stand hält? Bei solchen Fragen kommt der Berechnungsingenieur ins Spiel. Er führt Simulationsrechnungen durch und moduliert Systeme, z.B. zur Berechnung des Wetters. Dabei ist Berechnungsingenieurwesen kein eigener Studiengang. In diesem Beruf finden sich Ingenieure unterschiedlicher Fachrichtungen. Bauingenieure sind dort ebenso anzutreffen wie Maschinenbauingenieure und Kunststofftechnik-Ingenieure. Eine gute Möglichkeit, in den Beruf einzusteigen, sind berufsbegleitende Praktika oder Studienarbeiten.
Berechnungsingenieur: Karriereoption für Bauingenieure
Berechnungsingenieure sind auch dort am Werk, wo man es zunächst vielleicht nicht vermuten würde. So berechnen sie etwa den optimalen Klang von Türen für die Automobilindustrie. Sie sind aber auch im Brückenbau tätig. „Eine Karriere als Berechnungsingenieur kann für Bauingenieure eine attraktive Laufbahn sein. Für sie gibt es viele Einsatzmöglichkeiten“, sagt Martin Ritterbach, Managing Director Buildings beim Planungs- und Beratungsunternehmen Arcadis Germany.
Wer Stellenanzeigen für Berechnungsingenieure durchstöbert, stößt fast immer auf drei Buchstaben: CFD oder FEM. CFD steht für die numerische Strömungsmechanik. Die Finite-Element-Methode ist ein Berechnungsverfahren zur Lösung mechanischer Differentialgleichungen. „Mit diesem Verfahren wird bei uns zum Beispiel berechnet, welche Kräfte auf eine Brücke einwirken. Mit dem Ergebnis können wir ermitteln, wie der Bewehrungsstahl in den Stahlbeton angebracht werden muss“, erklärt Ritterbach.
Berechnungsingenieure in der Automobilindustrie
EDAG ist ein Ingenieursdienstleister im Automobilbereich. Hier unterscheiden sich die Aufgabengebiete der Ingenieure nach den Themen, die ausgelegt, entwickelt oder getestet werden sollen. So finden sich bei EDAG unter anderem Berechnungsingenieure, die Fahrzeugeigenschaften und -funktionen analysieren und optimieren. Dazu gehören Fragestellungen zu Steifigkeit, Festigkeit, Akustik, Insassensicherheit, Fußgängerschutz und Strukturcrash, aber auch Themen wie Aerodynamik und Fahrdynamik.„Die Entwicklung der Produkteigenschaften findet zunächst rein virtuell am Computer statt. Erst zum Abschluss der Entwicklung werden die simulierten und optimierten Fahrzeugeigenschaften in der Realität durch Hardwaretests, zum Beispiel Crashversuche, überprüft“, erklärt Jörg Hülsmann. Der studierte Maschinenbauingenieur leitet die Bereiche numerische Simulation, englisch Computer-Aided Engineering (CAE) und Fahrzeugsicherheit.
Arbeitsweise: Zyklus in drei Prozessschritten
Ein Großteil der Zeit arbeiten die Berechnungsingenieure aus Hülsmanns Team am Computer. Die Arbeit folgt dabei drei wesentlichen Prozessschritten. „Im ersten Schritt überlegen wir uns, wie wir die konkrete Simulationsaufgabe möglichst realistisch und physikalisch korrekt als virtuelles Modell abbilden und beschreiben können, um dann das dafür geeignete Simulationstool auszuwählen“. Dieser Prozessschritt nennt sich Modellaufbau und wird in einem dafür geeignetem Softwaretool, dem Preprozessor, durchgeführt.
Im zweiten Schritt, dem Solving, wird das Modell an einen so genannten Solver geschickt. „Ein Solver ist im Prinzip eine Software, die die gestellte Fragestellung z.B. nach der Steifigkeit eines bestimmten Bauteils, numerisch löst und ein Ergebnisfile erzeugt“, so Hülsmann.
Der dritte Arbeitsschritt ist das so genannte Post-Processing, auch Auswertung genannt. In diesem Schritt konvertiert der Berechnungsingenieur die Daten in Kurven, Bilder, Diagramme oder andere Visualisierungsformen, um dann das Ergebnis zu interpretieren. Das Ergebnis wird zunächst auf Plausibilität geprüft und dann im Sinne einer Lösungsfindung analysiert. „Wenn es beispielsweise um das Thema Festigkeit geht, prüfen wir, wie nah sich die Dehnungen in dem untersuchten Lastfall der Streckgrenze oder der Bruchdehnung annähern. Anschließend geben wir eine klare Bewertung und unsere Empfehlung für weitere Optimierungen an die Konstrukteure ab“, erläutert Hülsmann. Die Ergebnisse werden gemeinsam diskutiert und wenn notwendig Optimierungsmaßnahmen hinsichtlich Funktion, Gewicht und Bauteilkosten definiert. Dann beginnt der Zyklus von vorne.
Voraussetzungen für Berechnungsingenieure
Grundvoraussetzung sei eine Leidenschaft für Mathematik und Physik. Neben mathematischen Fähigkeiten sind auch IT-Kompetenzen wichtig, immerhin müssen Berechnungsingenieure selbst programmieren können.“, so Ritterbach. Außerdem muss ein sehr gutes Verständnis komplexer Zusammenhänge vorhanden sein. Nur so sei die für die Umsetzung in Projekten notwendige Transferleistung zu erbringen.
Viele Berechnungsingenieure aus Hülsmanns Team sind studierte Maschinenbauingenieure. Aus gutem Grund: „Bereits im Grundstudium werden die Grundlagen der technischen Mechanik vermittelt, die man für diesen Beruf benötigt“. Wer den Beruf ergreifen möchte, dem empfiehlt er darüber hinaus, das Wissen mit dem Zusatzmodul „Angewandte Mechanik“ weiter zu vertiefen.
Auch Wirtschaftsingenieuren bescheinigt Hülsmann gute Aussichten in diesem Beruf. Allerdings sei entscheidend, dass eine technische Ausrichtung bei den Wahlpflichtfächern und bei den praktischen Tätigkeiten erkennbar ist, etwa bei Praktika oder Abschlussarbeiten in der Industrie. Ebenso wichtig wie das praktische Wissen ist für Hülsmann die Persönlichkeit des Bewerbers. „Eine Berechnung am Computer ist immer nur ein vereinfachtes theoretisches Konstrukt. Über die Abweichung zur Realität muss man sich stets bewusst sein. Ein Berechnungsingenieur sollte daher in der Lage sein, seine Arbeit kritisch zu hinterfragen. Das schafft nicht jeder.“
Finden Sie passende Praktika in unserer Praktikumsbörse
Interdisziplinäre Problemlösung ist häufig gefragt
„Im Gegensatz zu den klassischen Konstruktionswerkstoffen existieren keine anerkannten Regeln der Technik um das mechanische Verhalten von Klebstoffen zu berechnen“, erklärt Gudrun Weigel, Leiterin des Bereichs Engineerings beim Industrieklebstoffhersteller Delo. Das liege unter anderem an dem ausgeprägten zeit- und temperaturabhängigen Verhalten der meisten Klebstoffe und der Notwendigkeit, dieses zu berücksichtigen. Zudem könne nicht wie im Maschinenbau mit konstanten Werkstoffparametern gearbeitet werden. Berechnungen in der Klebtechnik seien damit um einiges komplexer, so die Kunststofftechnik-Ingenieurin. Das mache die Arbeit gleichzeitig sehr spannend und herausfordernd.
Bei Delo arbeiten Berechnungsingenieure eng mit ihren Kollegen aus dem Labor zusammen. Sie tauschen ihr Wissen über die Eigenschaften von Klebstoffen aus und führen Versuchsreihen durch. Auf Basis der ermittelten Daten werden dann die Berechnungen und Simulationen durchgeführt. „Bei den Testreihen kommen oft große Datenmengen zusammen. Dann sollte man in der Lage sein, schnell mal ein Skript zu programmieren, mit dem die Daten automatisiert verarbeitet werden können“, so Weigel.
In dem Unternehmen arbeiten viele Ingenieure aus den Bereichen Mikroelektronik, Halbleitertechnik, Elektrotechnik, Stahl- und Leichtbau oder Werkstoffwissenschaften. „Aus meiner Sicht ist die grundsätzliche Herangehensweise zur effektiven Lösung von Berechnungsfragestellungen in vielen Bereichen sehr ähnlich. Die Berechnungsmethoden können sich im Detail jedoch sehr unterscheiden und bedürfen auch der Anwendung eigener Methoden“, so Weigel. Eine komplexe statische Berechnung für eine geklebte Leichtbaustruktur müsse anders analysiert werden als die Wärmeverteilung in einer Klebverbindung oder das Aufprallen einer Teststruktur auf die Motorhaube einer geklebten Karosserie. „In jedem Bereich zählt es, Erfahrung aufzubauen und die Fallstricke, Kniffe aber auch Grenzen der jeweiligen Methoden und Modelle zu kennen.“
Ein Beitrag von: