Gefaltet wie Origami 07.12.2017, 12:30 Uhr

Dieser künstliche Muskel gibt Robotern Superkräfte

Ein 2,6 Gramm leichter künstlicher Muskel, der das Tausendfache seines Gewichts anhebt: Das ermöglicht Falttechnik nach dem Origami-Prinzip. Kann die Erfindung von MIT-Ingenieuren in der Soft-Robotics-Branche für Furore sorgen?

Greifer hebt mit künstlichen Muskeln einen Autoreifen

Ein Greifer hebt mit künstlichen Muskeln einen Autoreifen. Die Muskeln sind in der Lage, das Tausendfache ihres Eigengewichts zu heben.

Foto: Shuguang Li/Wyss Institute/Harvard University

Müssen Roboterarme aus Metall bestehen? Nein, sie können auch Leichtgewichte sein. Um den Beweis anzutreten, haben Forscher des Massachusetts Institute of Technology (MIT) und der Harvard University gebastelt. Inspiriert von Origami – die japanische Kunst des Papierfaltens – haben sie eine Kunststofffolie zu einem akkordeonähnlichen Skelett zurechtgeknickt und in einem Kunststoffbeutel versiegelt. Sobald eine Pumpe ein Vakuum erzeugt, ziehen sich Haut und Skelett auf 10 % ihrer Ursprungsgröße zusammen und erzeugen eine Hebebewegung.

So stark wie eine Stockente, die ein Auto anhebt

Der künstliche Muskel erzeugt erstaunliche Kräfte. Er wiegt nur 2,6 g, kann aber ein 2,6 kg schweres Gewicht anheben, also das Tausendfache seines Eigengewichts. Diese Relation lässt Industrieroboter alt aussehen, zeigt ein Vergleich des Onlinemagazins wired: Der Roboterarm UR10 wiegt 29 kg und hebt 10 kg schwere Gewichte, also nur knapp ein Drittel seines Eigengewichts.

Gefaltetes Kunststoffskelett versiegelt in einem Kunststoffbeutel

Das Prinzip des künstlichen Muskels ist simpel: Ein gefaltetes Kunststoffskelett, versiegelt in einem Kunststoffbeutel, zieht sich im Vakuum zusammen.

Quelle: Wyss Institute/Harvard University

Stellenangebote im Bereich Automatisierungstechnik

Automatisierungstechnik Jobs
Truma Gerätetechnik GmbH & Co. KG-Firmenlogo
Product Compliance Officer (m/w/d) Truma Gerätetechnik GmbH & Co. KG
Putzbrunn Zum Job 
Stadtwerke Weimar Stadtversorgungs-GmbH-Firmenlogo
Planungsingenieur (m/w/d) Fernwärme Stadtwerke Weimar Stadtversorgungs-GmbH
IMS Messsysteme GmbH-Firmenlogo
Elektrotechnikingenieur/-techniker (m/w/i) für die Prüfung von Messsystemen IMS Messsysteme GmbH
Heiligenhaus Zum Job 
Propan Rheingas GmbH & Co. KG-Firmenlogo
Senior Energieberater (m/w/d) Propan Rheingas GmbH & Co. KG
Berger Holding GmbH & Co. KG-Firmenlogo
Projektmanager (m/w/d) im Bereich Technology & Operations Berger Holding GmbH & Co. KG
Memmingen Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Projektingenieur (w/m/d) mit Schwerpunkt Tunnelbetrieb Die Autobahn GmbH des Bundes
Bergische Universität Wuppertal-Firmenlogo
Research Assistant (postdoc) in the field of additive manufacturing of metals Bergische Universität Wuppertal
Wuppertal Zum Job 
MICON Gruppe-Firmenlogo
Ingenieur (m/w/d) MICON Gruppe
Nienhagen Zum Job 
STOPA Anlagenbau GmbH-Firmenlogo
Ingenieur / Techniker (m/w/d) Elektrotechnik / Automatisierungstechnik für Inbetriebnahme Außendienst (Elektrotechniker, Maschinenbauingenieur o. ä.) STOPA Anlagenbau GmbH
Achern-Gamshurst Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Projektingenieur (w/m/d) Elektrotechnik Die Autobahn GmbH des Bundes
Hamburg Zum Job 
THOST Projektmanagement GmbH-Firmenlogo
Ingenieur*in (m/w/d) im Bereich Anlagenbau THOST Projektmanagement GmbH
Essen, Frankfurt am Main, Köln Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur Straßenausstattung (w/m/d) Die Autobahn GmbH des Bundes
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur Straßenausstattung (w/m/d) Die Autobahn GmbH des Bundes
Hochschule Esslingen - University of Applied Sciences-Firmenlogo
Professor:in (W2) für das Lehrgebiet "Automatisierungssysteme in Gebäude-, Energie- und Umwelttechnik" Hochschule Esslingen - University of Applied Sciences
Esslingen am Neckar Zum Job 
GEBHARDT Fördertechnik GmbH-Firmenlogo
Senior Layout Designer (m/w/d) GEBHARDT Fördertechnik GmbH
Sinsheim Zum Job 
Christian-Albrechts-Universität zu Kiel-Firmenlogo
Ingenieur*in der Fachrichtung Versorgungstechnik/ Maschinenbau oder Elektrotechnik Christian-Albrechts-Universität zu Kiel
Schneider Form GmbH-Firmenlogo
CAD Projektleiter (m/w/d) in der Produktentwicklung Schneider Form GmbH
Böblingen, Chemnitz, Dettingen unter Teck Zum Job 
Broadcast Solutions GmbH-Firmenlogo
Elektroingenieur* in Vollzeit (m/w/d) Broadcast Solutions GmbH
Stadtwerke München GmbH-Firmenlogo
Projektingenieur*in für Instandhaltung der Anlagen Fahrweg U-Bahn (m/w/d) Stadtwerke München GmbH
München Zum Job 
Steinmeyer Mechatronik GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) Steinmeyer Mechatronik GmbH
Dresden Zum Job 

Der künstliche Muskel ist so stark wie eine Stockente, die ein Auto anhebt, so die Forscher. „Wir waren überrascht, wie stark die Aktoren sind“, sagt Roboter-Ingenieurin Daniela Rus vom MIT. Mit einer Steigerung des Funktionsgewichts um das Tausendfache habe man nicht gerechnet. „Es ist, als würde man diesen Robotern Superkräfte geben.“

Muskelgröße reicht von wenigen Millimetern bis zu einem Meter

Die Muskeln sind nicht auf Hebebewegungen beschränkt. Die Forscher haben bereits Skelettstrukturen aus verschiedenen Materialien gefaltet, die beim Zusammenziehen Schraub- und Drehbewegungen ausführen. Die Skelettfalten bestimmen, wie sich die gesamte Struktur bewegt, sagt Wissenschaftler Shuguang Li vom Wyss Institut der Harvard Universität. „Im Prinzip bekommt man diese Bewegung kostenlos, ohne ein Kontrollsystem zu benötigen.“

Dreh- und Schraubbewegungen künstlicher Muskel

Der künstliche Muskel kann Objekte nicht nur anheben, sondern auch Dreh- und Schraubbewegungen ausführen.

Quelle: Wyss Institute/Harvard University

Die Tüftler haben auch schon künstliche Muskeln in den unterschiedlichsten Größen gebaut. „Wir haben sie in Größen von wenigen Millimetern bis zu einem Meter gebaut, und ihre Leistung hält auf der ganzen Linie an“, sagt Forscher Rob Wood vom Wyss Institute. „Jetzt, da wir Aktuatoren mit natürlichen Muskeleigenschaften geschaffen haben, können wir uns vorstellen, fast jeden Roboter für fast jede Aufgabe zu bauen.“

Exoskelette und Roboterarme für die Weltraumforschung

Mögliche Einsatzmöglichkeiten für die künstlichen Muskeln haben die Forscher bereits vor Augen. Rus: „Wir glauben, dass sie die Art und Weise verändern werden, wie wir Soft Robotics in Fabriken, im Haushalt und im Alltag einsetzen.“ Denkbar wäre zum Beispiel der Bau chirurgischer Miniaturgeräte, tragbarer Exoskelette oder Roboterarme für die Weltraumforschung. Für die künstliche Haut könne man Silikon verwenden, um den künstlichen Muskel hitzebeständig zu machen. „Die Möglichkeiten sind wirklich grenzenlos.“

Ein Beitrag von:

  • Patrick Schroeder

    Patrick Schroeder arbeitete während seines Studiums der Kommunikationsforschung bei verschiedenen Tageszeitungen. 2012 machte er sich als Journalist selbstständig. Zu seinen Themen gehören Automatisierungstechnik, IT und Industrie 4.0.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.