CalTech-Forschende bringen einem alten Metall neue Tricks bei
CalTech-Forschende recyceln Samarium(II)-iodid für die chemische Synthese. Ein Durchbruch, der industrielle Anwendungen nachhaltiger macht.
Das metallische Element Samarium ist seit seiner Entdeckung 1879 in einer russischen Mine für seine nützlichen Eigenschaften bekannt. Es hat sich als wertvolles Reagenz in der chemischen Synthese bewährt, insbesondere in Kombination mit anderen Elementen. Ein häufig verwendetes Samariumreagenz ist Samarium(II)-iodid (SmI2), das aus einem Samariumatom und zwei Iodatomen besteht. Dieses Reagenz hat sich bei der Synthese neuer Moleküle, die zu innovativen Arzneimitteln führen könnten, als äußerst nützlich erwiesen.
Doch bisher gab es ein großes Problem: Die Herstellung von Samarium(II)-iodid in industriell nutzbaren Mengen war eine Herausforderung. Forschende des renommierten California Institute of Technology (CalTech) haben nun eine Möglichkeit gefunden, welche die industrielle Nutzung von Samarium(II)-iodid auf eine neue Ebene heben könnte.
Samarium(II)-iodid reagiert empfindlich auf Luft und Feuchtigkeit
Samarium(II)-iodid ist für seine hohe Reaktivität bekannt, aber es hat auch eine Schwäche: Es reagiert empfindlich auf Luft und Feuchtigkeit. Dies bedeutet, dass es oft direkt vor der Verwendung frisch angesetzt werden muss, was die Handhabung im industriellen Maßstab erschwert.
„Wir müssen häufig große Mengen dieses Reagenzes selbst für kleine Reaktionen verwenden, was den industriellen Einsatz unpraktisch macht“, erklärt Chungkeun Shin, Doktorand an der CalTech und einer der führenden Köpfe hinter der aktuellen Forschung.
Der Durchbruch: Recycling von Samarium(II)-iodid
In der August-Ausgabe des Wissenschaftsmagazins Science beschreiben CalTech-Forschenden, wie sie das Problem der Skalierbarkeit gelöst haben. Ihre Methode ermöglicht es Samarium(II)-iodid effizient zu recyceln und mehrmals in einer einzigen chemischen Reaktion zu verwenden. Das reduziert nicht nur den Bedarf an neuen Reagenzien und Lösungsmitteln, sondern macht die Prozesse auch umweltfreundlicher und kostengünstiger.
Sarah Reisman, Chemieprofessorin am CalTech, betont die Bedeutung dieses Fortschritts: „Samarium(II)-iodid war ein wichtiges Werkzeug bei der Synthese von Naturstoffen wie dem Krebsmittel Taxol. Bisher war es jedoch nicht für die Massenproduktion geeignet. Jetzt können wir einige dieser wichtigen Reaktionen in die Prozessentwicklung und industrielle Produktion überführen“.
Die Rolle der Samarium-Sauerstoff-Bindung
Ein zentrales Hindernis bei der Nutzung von Samarium(II)-iodid war die Bildung einer starken Samarium-Sauerstoff-Bindung während der Reaktionen. Diese Bindung machte das Samarium inaktiv und verhinderte eine Wiederverwendung des Reagenzes. „Diese Bindung zu brechen und das Samarium in seinen aktiven Zustand zurückzuführen, war bisher äußerst schwierig“, erklärt Emily Boyd, eine Doktorandin der CalTech, die an der Studie beteiligt war.
In ihrer Forschung entdeckten Boyd und ihre Kollegeninnen und Kollegen, dass der Einsatz einer milden Säure die Lösung sein könnte. Die Säure führt ein Proton in den gebundenen Sauerstoff ein, verwandelt ihn in Alkohol und setzt dabei das Samarium frei. Diese innovative Technik ermöglicht es, das Reagenz wiederholt zu nutzen, ohne dass scharfe Chemikalien erforderlich sind.
Zusammenarbeit für nachhaltige Chemie
Die Entdeckung wurde durch die Zusammenarbeit zweier Labors am CalTech ermöglicht: Sarah Reismans Labor, das auf organische Synthese spezialisiert ist, und Jonas Peters‘ Labor, das sich mit nachhaltiger Chemie befasst. Peters’ Team beschäftigt sich unter anderem mit der Stickstofffixierung, einem Prozess, bei dem Stickstoff in Ammoniak umgewandelt wird, eine Verbindung, die für Pflanzen lebenswichtig ist.
„Die Umwandlung von Stickstoff in Ammoniak ist ein Schlüsselbereich unserer Forschung“, sagt Boyd. „Das Samarium-Reagenz hat sich bei der Untersuchung dieser Reaktionen als nützlich erwiesen, aber die Hochskalierung auf industrielle Maßstäbe war immer eine Herausforderung. Die Zusammenarbeit mit dem Reisman-Labor ermöglichte eine Synergie der Kompetenzen und führte zu einem entscheidenden Durchbruch.
Ein Beitrag von: