Neuer Katalysator 05.12.2019, 08:15 Uhr

Kohlendioxid leichter in Kraftstoffe umwandeln

Die Idee, aus Wasser, Kohlendioxid und Sonnenlicht Methanol herzustellen, ist nicht neu. Mit einem Innovativen Katalysator gelingen Wissenschaftlern die Synthesen jedoch mit einem geringeren Energieaufwand.

Im Labor untersuchten Forscher, wie aus Kohlendioxid, Wasser und Licht Methanol entsteht. Als Katalysator verwendeten sie ein Kupferoxid.
Foto: Tijana Rajh / Argonne National Laboratory

Im Labor untersuchten Forscher, wie aus Kohlendioxid, Wasser und Licht Methanol entsteht. Als Katalysator verwendeten sie ein Kupferoxid.

Foto: Tijana Rajh / Argonne National Laboratory

Die Konzentration von Kohlendioxid in unserer Atmosphäre nimmt ständig zu, und Folgen für die Umwelt und Gesundheit stehen außer Frage. Um hier gegenzusteuern, ist die Verminderung von Emissionen nur eine mögliche Strategie. Wissenschaftler versuchen außerdem, Teile des Treibhausgases aus der Atmosphäre zurückzugewinnen, um daraus Treibstoffe herzustellen: eine Möglichkeit, den CO2-Kreislauf zu schließen. Doch viele chemische Reaktionen sind mit einem hohen Energieaufwand verbunden.

Um die energetische Barriere chemischer Reaktionen, also die Aktivierungsenergie, zu verringern, arbeiten Ingenieure mit Katalysatoren. Jetzt haben Wissenschaftler am Argonne National Laboratory, US Department of Energy, gezeigt, dass es gelingt, aus Sonnenlicht und Kohlendioxid Methanol als Energieträger herzustellen. Sie entwickelten einen Katalysator, der größtenteils aus Kupfer besteht. Methanol ist ein Ausgangsprodukt für Synthesen der chemischen Industrie, kann aber auch direkt als Kraftstoff eingesetzt werden.

Stellenangebote im Bereich Chemieingenieurwesen

Chemieingenieurwesen Jobs
SARPI Deutschland GmbH-Firmenlogo
Junior-Betriebsingenieur/Verfahrensingenieur Prozesstechnik (m/w/d) SARPI Deutschland GmbH
Südzucker AG-Firmenlogo
Trainee Verfahrenstechnik / Chemieingenieurwesen / Chemie / Maschinenbau (m/w/d) Südzucker AG
verschiedene Standorte Zum Job 
PASS GmbH & Co. KG-Firmenlogo
Entwicklungsingenieur/in oder Chemieingenieur/in (m/w/x) PASS GmbH & Co. KG
Schwelm Zum Job 
Verdos GmbH-Firmenlogo
Projektleiter / Projektabwickler (m/w/d) für Dosiertechnik (Chemikaliendosierung) Verdos GmbH
TTP Holding GmbH-Firmenlogo
Projektingenieur Pharmatechnik (m/w/d) 80% - 100% TTP Holding GmbH
Basel, Visp (Schweiz) Zum Job 
TTP Holding GmbH-Firmenlogo
Chemieingenieur / Verfahrensingenieur (m/w/d) 80% - 100% TTP Holding GmbH
Basel (Schweiz) Zum Job 
Dow-Firmenlogo
Jump-start Your Engineering Career at Dow - Talent Pool Dow
Schkopau Zum Job 
Dow-Firmenlogo
Campus Internship - Process Engineering (Chemie-/Verfahrenstechnik) Dow
BG ETEM-Firmenlogo
Referent/in (m/w/d) mit Zusatzaufgaben im Bereich Fachkompetenzcenter Gefahrstoffe BG ETEM
Siegfried PharmaChemikalien Minden GmbH-Firmenlogo
Betriebsassistent Entsorgung (w/m/d) Siegfried PharmaChemikalien Minden GmbH
KLN Ultraschall AG-Firmenlogo
Projekt-/Vertriebsingenieur (m/w/d) KLN Ultraschall AG
Heppenheim Zum Job 
DEKRA Automobil GmbH-Firmenlogo
Sachverständiger Berechnung Entwurfsprüfung Druckgeräte (m/w/d) DEKRA Automobil GmbH
Stuttgart Zum Job 

Ein Halbleiter als Katalysator

„Kohlendioxid ist ein sehr stabiles Molekül und entsteht durch die Verbrennung von praktisch allen organischen Materialien“, sagt Tijana Rajh vom Argonne National Laboratory. Um es in nützliche Chemikalien umzuwandeln, sei ein Katalysator erforderlich. Das Team testete unterschiedliche Materialien mit katalytischen Eigenschaften, wobei das Kupferoxid die besten Eigenschaften zeigte.

Kupferoxid ist ein Halbleiter und wird mit dem sogenannten Bändermodell beschrieben: Elektronen sind mit einer gewissen Energie vorhanden; sie besetzen das energetisch tiefere Valenzband. Daneben gibt es das leere, energetisch höher gelegene Leitungsband. Zwischen beiden Bändern klafft eine Energielücke.

Unter Lichteinwirkung erhalten Elektronen Energie; sie wandern vom Valenz- in das Leitungsband und reduzieren chemische Verbindungen. Dabei bleibt eine positiv geladene Lücke im Leitungsband zurück – hier wird Wasser oxidiert. Beide Teilschritte, die Reduktion und die Oxidation, laufen am Katalysator ab. Rajh: „Unser Photokatalysator ist besonders spannend, weil er eines der negativsten Leitungsbänder hat, was bedeutet, dass die Elektronen mehr Energie zur Verfügung haben, um Reaktionen durchzuführen.“

Kupfer führt zu einer selektiveren Reaktion

Die Idee, Kohlendioxid mit Sonnenlicht in nutzbare Energie umzuwandeln, kennt man aus der Natur. „Unsere Idee war es, die Photosynthese nachzuahmen, um Kraftstoffe herzustellen“, erklärt Rajh. „Doch wir stießen schnell auf ein komplexes Problem: Um Methanol herzustellen, braucht man nicht nur ein Elektron, wie in der Natur, sondern sechs.“

Bisherige Versuche, mit Photokatalysatoren wie Titandioxid Kohlendioxid zu reduzieren, führten nicht zum Erfolg. Im Labor entstand ein Gemisch unterschiedlicher Produkte, etwa Methan, Methanol und Methanal (Formaldehyd).

Durch den Wechsel von Titandioxid zu Kupferoxid fanden Wissenschaftler einen Katalysator, der nicht nur ein negativeres Leitungsband aufweist, sondern auch wesentlich selektiver in Bezug auf seine Produkte ist. Diese Eigenschaft lässt sich sowohl mit der Chemie des Kupferoxids als auch mit der Geometrie des Festkörpers erklären.

Moleküle bei der Reaktion beobachten

Die Forscher begannen danach, Oberflächenstrukturen ihres Katalysators aus Kupferoxid zu untersuchen. Beim Experiment nahmen sie kleinste Partikel des Materials mit Elektronen unter Beschuss, während die chemische Reaktion ablief.

Kohlendioxid wurde an der Oberfläche adsorbiert. Beim Vorgang veränderte sich die Geometrie des Moleküls etwas, und die Aktivierungsenergie verringerte sich. Anschließend näherten sich Wassermoleküle dem gebundenen Kohlendioxid, bevor es zur chemischen Reaktion kam.

„Die sogenannte Adsorptionskonformation ist bei der Photokatalyse äußerst wichtig“, sagt Rajh. Würde Kohlendioxid falsch gebunden, komme es zu keiner Reaktion. „Aber wenn die Struktur leicht verändert wird, verringert sich die erforderliche Energie.“

Mehr zum Thema

Verfahren zur Synthese von Kohlenwasserstoffen teilweise zu aufwendig

Darin sieht er einen großen Vorteil seines Verfahrens, verglichen mit anderen Prozessen. Beispielsweise kann man Wasser elektrochemisch in Wasserstoff und Sauerstoff spalten – die Energie kommt aus der Windkraft oder aus Solarzellen. Wasserstoff wiederum reagiert bei hohem Druck und hoher Temperatur mit Kohlendioxid zu einem Gemisch unterschiedlicher Kohlenwasserstoffe. Die Synthese kostet viel Energie und liefert ein Gemisch unterschiedlicher Chemikalien.

Hier spielen Katalysatoren ihre Stärke aus, an denen nicht nur Rajh arbeitet. Das Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB experimentiert ebenfalls mit Edelmetallen, Metalloxiden und keramischen Trägern, um Ethen aus Kohlendioxid und Wasser herzustellen.

Mehr zum Thema Kohlendioxid-Verwertung:

Ein Beitrag von:

  • Michael van den Heuvel

    Michael van den Heuvel hat Chemie studiert. Unter anderem arbeitet er für Medscape, DocCheck, für die Universität München und für pharmazeutische Fachmagazine. Seit 2017 ist er selbstständiger Journalist und Gesellschafter von Content Qualitäten. Seine Themen: Chemie/physikalische Chemie, Energie, Umwelt, KI, Medizin/Medizintechnik.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.