Dunkle Exzitonen 30.01.2025, 12:14 Uhr

Blick ins Dunkle für bessere Solarzellen, Sensoren und LEDs

Eine neue Technik macht die sogenannten dunklen Exzitonen sichtbar. Diese spielen eine wichtige Rolle bei der Entwicklung effizienterer Solarzellen, LEDs und Sensoren.

Dunkle Exzitonen

Die ultraschnelle Dunkelfeldspektroskopie erlaubt es, sowohl helle (rot) als auch dunkle (blau) Exzitonen zu untersuchen.

Foto: Lukas Kroll

Solarzellen, LEDs und Sensoren könnten bald deutlich effizienter werden. Der Schlüssel dazu liegt in einer kaum sichtbaren physikalischen Eigenschaft: den sogenannten dunklen Exzitonen. Ein internationales Forschungsteam unter Leitung der Universität Göttingen hat eine Methode entwickelt, um diese schwer nachweisbaren Teilchen erstmals gezielt zu beobachten. Die neue Technik könnte zukünftige Halbleiter-Technologien revolutionieren.

Was sind dunkle Exzitonen?

Dunkle Exzitonen sind besondere Ladungsträgerzustände in Halbleitern. Sie entstehen, wenn Licht ein Elektron in einen höheren Energiezustand versetzt. Dabei bleibt eine positive Lücke, das sogenannte Elektronenloch, zurück. Elektron und Loch sind durch eine Kraft miteinander verbunden – die Coulomb-Wechselwirkung. Im Gegensatz zu normalen Exzitonen können dunkle Exzitonen jedoch kein Licht emittieren. Das macht sie unsichtbar für herkömmliche optische Messmethoden.

Schon in den 1960er-Jahren wurde die Existenz von Exzitonen theoretisch vorhergesagt. Doch erst 2020 gelang Forschenden am Okinawa Institute of Science and Technology der direkte experimentelle Nachweis von dunklen Exzitonen in Halbleitern. Sie stellten fest, dass diese unsichtbaren Energieträger sogar häufiger vorkommen als ihre sichtbaren Gegenstücke. Das weckte das Interesse der Wissenschaft, da sich durch ihre gezielte Nutzung Halbleiterbauteile deutlich verbessern lassen könnten.

Stellenangebote im Bereich Elektrotechnik, Elektronik

Elektrotechnik, Elektronik Jobs
Mercer Stendal GmbH-Firmenlogo
Betriebstechniker (m/w/d) Prozessleittechnik Mercer Stendal GmbH
Arneburg Zum Job 
Solventum Germany GmbH-Firmenlogo
Prozessingenieur Automatisierungstechnik / Mechatronik / Maschinenbau (m/w/*) Solventum Germany GmbH
Seefeld Zum Job 
Josefs-Gesellschaft gAG-Firmenlogo
Leitung (m/w/d) Gebäudemanagement Josefs-Gesellschaft gAG
Hochheim am Main, Rüdesheim am Rhein, Oberursel Zum Job 
Desitin Arzneimittel GmbH-Firmenlogo
Projektmanager Gebäudeautomation (m/w/d) Desitin Arzneimittel GmbH
Hamburg Zum Job 
Desitin Arzneimittel GmbH-Firmenlogo
Projektmanager TGA (m/w/d) Desitin Arzneimittel GmbH
Hamburg Zum Job 
Wirtgen GmbH-Firmenlogo
Project Manager Product Lifecycle Management (m/w/d) Wirtgen GmbH
Windhagen Zum Job 
Industriepark Nienburg GmbH-Firmenlogo
Ingenieur (m/w/d) Elektrotechnik als Leiter Elektrotechnik & Automation Industriepark Nienburg GmbH
Nienburg Zum Job 
Steinmeyer Mechatronik GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) Steinmeyer Mechatronik GmbH
Dresden Zum Job 
AbbVie Deutschland GmbH & Co. KG-Firmenlogo
Senior Project Engineer - Capital Investments (all genders) AbbVie Deutschland GmbH & Co. KG
Ludwigshafen am Rhein Zum Job 
Stadtwerke Potsdam GmbH-Firmenlogo
Bauleiter (m/w/d) Realisierung Stadtwerke Potsdam GmbH
Potsdam Zum Job 
degewo AG-Firmenlogo
TGA-Ingenieur / Projektmanager Technische Gebäudeausrüstung Sanierung (w/m/d) degewo AG
Schleifring GmbH-Firmenlogo
Ingenieur / Vertriebsingenieur (m/w/d) für den Bereich Key Account Schleifring GmbH
Fürstenfeldbruck Zum Job 
RIPPERT GmbH & Co. KG-Firmenlogo
Ingenieur für Maschinensicherheit (m/w/d) RIPPERT GmbH & Co. KG
Herzebrock-Clarholz Zum Job 
ONTRAS Gastransport GmbH-Firmenlogo
Projektingenieur Wasserstoff (m/w/d) ONTRAS Gastransport GmbH
Leipzig Zum Job 
Synthos Schkopau GmbH-Firmenlogo
Maintenance Engineer (m/w/d) Synthos Schkopau GmbH
Schkopau Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur/in (m/w/d) für Tunnelsicherheit Die Autobahn GmbH des Bundes
Stuttgart Zum Job 
SE Tylose GmbH & Co. KG-Firmenlogo
Ingenieur der Mess- und Regeltechnik (m/w/d) für Investitionsprojekte SE Tylose GmbH & Co. KG
Wiesbaden Zum Job 
Bundesamt für Bauwesen und Raumordnung (BBR)-Firmenlogo
Hauptabteilungsleitungen für Bauaufgaben des Bundes (w/m/d) Bundesamt für Bauwesen und Raumordnung (BBR)
Berlin, Bonn Zum Job 
Nitto Advanced Film Gronau GmbH-Firmenlogo
Projektingenieur im Engineering (w/m/d) Nitto Advanced Film Gronau GmbH
Evonik Operations GmbH-Firmenlogo
EMR-Anlageningenieur (m/w/d) mit Sonderqualifikation Evonik Operations GmbH
Rheinfelden (Baden) Zum Job 

Neuer Blick auf dunkle Exzitonen

Ein Team um Prof. Dr. Stefan Mathias vom I. Physikalischen Institut der Universität Göttingen hat nun eine neue Methode entwickelt: die ultraschnelle Dunkel-Feld-Impulsmikroskopie. Mit dieser Technik gelang es erstmals, dunkle Exzitonen direkt in einer speziellen Materialstruktur aus Wolframdiselenid (WSe₂) und Molybdändisulfid (MoS₂) zu beobachten.

Die Messungen fanden auf extrem kurzen Zeitskalen statt: Nur 55 Femtosekunden (0,000000000000055 Sekunden) dauert die Entstehung dieser Teilchen. Gleichzeitig erreicht die Methode eine Auflösung von 480 Nanometern – das entspricht etwa der halben Wellenlänge von sichtbarem Licht. Damit ermöglicht sie eine präzisere Analyse von Halbleitermaterialien als je zuvor.

„Mithilfe dieser Methode können wir die Dynamik von Ladungsträgern präzise sichtbar machen“, erklärt Dr. David Schmitt, Erstautor der Studie. „Unsere Ergebnisse zeigen, wie Materialeigenschaften die Bewegung von Ladungsträgern beeinflussen. Damit kann die Technik in Zukunft gezielt zur Optimierung von Solarzellen eingesetzt werden.“

Auswirkungen auf Solarzellen und Halbleitertechnologie

Der praktische Nutzen dieser Entdeckung könnte enorm sein. Da dunkle Exzitonen eine wichtige Rolle bei der Energieverteilung in Halbleitern spielen, könnte ihre gezielte Steuerung die Effizienz von Solarzellen steigern. Bisher geht ein großer Teil der Energie in Form von Abwärme verloren, bevor sie in elektrische Energie umgewandelt werden kann. Die neue Technik könnte helfen, diesen Prozess zu optimieren und den Energieverlust zu minimieren.

Dr. Marcel Reutzel, Nachwuchsgruppenleiter in der Arbeitsgruppe von Mathias, betont: „Unsere Methode ist nicht nur für diese speziellen Systeme relevant, sondern könnte auch für die Erforschung neuer Halbleitermaterialien genutzt werden.“ Das bedeutet, dass auch andere elektronische Bauteile, wie LEDs oder optische Sensoren, von dieser Technik profitieren könnten.

Zukunftsperspektiven

Die Forschungsergebnisse wurden in der renommierten Fachzeitschrift Nature Photonics veröffentlicht und von der Deutschen Forschungsgemeinschaft (DFG) gefördert. Die Erkenntnisse könnten weitreichende Folgen für die Entwicklung neuer Halbleitertechnologien haben. Besonders spannend: Die ultraschnelle Dunkel-Feld-Impulsmikroskopie könnte künftig eine Standardmethode werden, um Materialeigenschaften auf atomarer Ebene zu untersuchen.

Mit dieser neuen Technologie erhalten Forschende einen bisher unerreichten Einblick in die Funktionsweise von Halbleitern. Die Möglichkeiten für effizientere Solarzellen, leistungsfähigere LEDs und empfindlichere Detektoren sind laut Forschungsteam enorm.

Hier geht es zur Originalpublikation

Ein Beitrag von:

  • Dominik Hochwarth

    Redakteur beim VDI Verlag. Nach dem Studium absolvierte er eine Ausbildung zum Online-Redakteur, es folgten ein Volontariat und jeweils 10 Jahre als Webtexter für eine Internetagentur und einen Onlineshop. Seit September 2022 schreibt er für ingenieur.de.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.