Vorbild Zitteraal 18.07.2024, 11:23 Uhr

Dehnbare Gelee-Batterie soll sich für Gehirnimplantate eignen

Ein Forschungsteam der Universität Cambridge hat weiche, dehnbare „Gelee-Batterien“ entwickelt. Sie lassen sich für tragbare Geräte oder Softrobotik verwenden oder sogar ins Gehirn implantieren, um Medikamente zu verabreichen oder Krankheiten wie Epilepsie zu behandeln.

dehnbare Batterie

Die von der University of Cambridge entwickelte Batterie lässt sich für tragbare Geräte, Softrobotik oder Implantate verwenden.

Foto: University of Cambridge / Scherman Lab

Inspiriert von den bemerkenswerten Fähigkeiten der Zitteraale, entwickelten Forschende der University of Cambridge eine dehnbare und selbstheilende Gelee-Batterie. Zitteraale nutzen spezialisierte Muskelzellen, die sogenannten Elektrozyten, um elektrische Schläge zu erzeugen und ihre Beute zu betäuben. Das Forschungsteam adaptierte dieses Prinzip und entwickelte geleeartige Materialien, die ebenfalls elektrische Ströme erzeugen können. Die Elektrozyten-ähnlichen Materialien besitzen eine Schichtstruktur, die an klebrige Legosteine erinnert und es ihnen ermöglicht, effizient Strom zu leiten.

Batterie lässt sich um das Zehnfache dehnen

Die neu entwickelten Gelee-Batterien bestehen aus Hydrogelen – dreidimensionalen Netzwerken aus Polymeren, die über 60 % Wasser enthalten. Diese Polymere werden durch reversible On/Off-Wechselwirkungen zusammengehalten, was die mechanischen Eigenschaften des Gelees steuert. Diese Struktur verleiht den Batterien ihre Dehnbarkeit und Leitfähigkeit.

Das Material lässt sich laut Forschungsteam auf mehr als das Zehnfache seiner ursprünglichen Länge dehnen, ohne an Leitfähigkeit zu verlieren. Nach Meinung des Teams ist diese Kombination von Dehnbarkeit und Leitfähigkeit in einem einzigen Material einzigartig und öffnet neue Möglichkeiten für flexible und tragbare Technologien.

Herausforderung bei der Entwicklung der Batterie

Stephen O’Neill, der Erstautor der Studie, erklärt: „Es ist schwierig, ein Material zu entwickeln, das sowohl hoch dehnbar als auch hoch leitfähig ist, da diese beiden Eigenschaften normalerweise im Widerspruch zueinander stehen. Normalerweise nimmt die Leitfähigkeit ab, wenn ein Material gedehnt wird.“

Stellenangebote im Bereich Elektrotechnik, Elektronik

Elektrotechnik, Elektronik Jobs
ATLAS TITAN Mitte GmbH-Firmenlogo
Ingenieur Elektrotechnik (m/w/d) Schwerpunkt Automatisierungstechnik ATLAS TITAN Mitte GmbH
Braunschweig Zum Job 
ATLAS TITAN Mitte GmbH-Firmenlogo
Projektleiter Leitungsbau Schutztechnik (m/w/d) ATLAS TITAN Mitte GmbH
Stadtwerke Schneverdingen-Neuenkirchen GmbH-Firmenlogo
Leitender Ingenieur (m/w/d) Netzbau und -betrieb Strom und Breitband Stadtwerke Schneverdingen-Neuenkirchen GmbH
Schneverdingen Zum Job 
SPITZKE SE GVZ Berlin Süd-Firmenlogo
Bauleiter Elektrotechnik (m/w/d) SPITZKE SE GVZ Berlin Süd
Großbeeren Zum Job 
WIRTGEN GmbH-Firmenlogo
System- und Softwarearchitekt (m/w/d) - mobile Arbeitsmaschinen WIRTGEN GmbH
Windhagen (Raum Köln/Bonn) Zum Job 
WIRTGEN GmbH-Firmenlogo
Embedded Anwendungs-Softwareentwickler (m/w/d) - mobile Arbeitsmaschinen WIRTGEN GmbH
Windhagen (Raum Köln/Bonn) Zum Job 
Albtal-Verkehrs-Gesellschaft mbH-Firmenlogo
Projektleiter*in Elektrotechnik, Elektroingenieur*in oder Techniker*in (m/w/d) Albtal-Verkehrs-Gesellschaft mbH
Karlsruhe Zum Job 
WBS Training AG-Firmenlogo
Technische Trainer:in Automatisierungstechnik - CAD/CAM-Programmierung (m/w/d) WBS Training AG
remote (deutschlandweit) Zum Job 
IMS Messsysteme GmbH-Firmenlogo
Projektleiter (m/w/i) für Röntgen-, Isotopen- und optische Messsysteme IMS Messsysteme GmbH
Heiligenhaus Zum Job 
ILF Beratende Ingenieure GmbH-Firmenlogo
Senior Ingenieur Mess-, Steuerungs- und Regelungstechnik (m/w/d) ILF Beratende Ingenieure GmbH
Bremen, Berlin, Hamburg, München, Essen Zum Job 
ILF Beratende Ingenieure GmbH-Firmenlogo
Junior Ingenieur Mess-, Steuerungs- und Regelungstechnik (m/w/d) ILF Beratende Ingenieure GmbH
München Zum Job 
IPH Institut "Prüffeld für elektrische Hochleistungstechnik" GmbH-Firmenlogo
Ingenieur Elektrotechnik (m/w/d) für Transformatoren IPH Institut "Prüffeld für elektrische Hochleistungstechnik" GmbH
ME MOBIL ELEKTRONIK GMBH-Firmenlogo
Support- und Applikationsingenieur (m/w/d) ME MOBIL ELEKTRONIK GMBH
Langenbrettach Zum Job 
FERCHAU GmbH-Firmenlogo
Konstruktiver Elektroingenieur (m/w/d) FERCHAU GmbH
PFISTERER Kontaktsysteme GmbH-Firmenlogo
Technical Support High Voltage Accessories (m/w/d) PFISTERER Kontaktsysteme GmbH
Winterbach Zum Job 
B. Braun Melsungen AG-Firmenlogo
Global Lead (w/m/d) Operational Technology (OT) B. Braun Melsungen AG
Melsungen Zum Job 
WIRTGEN GmbH-Firmenlogo
Duales Studium Software Engineering - Bachelor of Engineering (m/w/d) WIRTGEN GmbH
Windhagen, Remagen Zum Job 
Infraserv GmbH & Co. Höchst KG-Firmenlogo
Ingenieur (w/m/d) Anlagen- & Prozesssicherheit Infraserv GmbH & Co. Höchst KG
Frankfurt am Main Zum Job 
Schluchseewerk AG-Firmenlogo
Ingenieur (m/w/d) Schwerpunkt Konformität Schluchseewerk AG
Laufenburg Zum Job 
Indorama Ventures Polymers Germany GmbH-Firmenlogo
Sicherheitsingenieur (m/w/d) für Anlagen- und Prozesssicherheit Indorama Ventures Polymers Germany GmbH
Gersthofen Zum Job 

Diese Herausforderung haben die Forschenden erfolgreich gemeistert, indem sie die Gelee-Batterien so konstruierten, dass sie Ionen als Ladungsträger nutzen, ähnlich wie Zitteraale. In der traditionellen Elektronik werden Elektronen als Ladungsträger verwendet, was in starren metallischen Materialien resultiert.

Dr. Jade McCune, Co-Autorin der Studie, ergänzt: „Indem wir die Salzkomponente eines jeden Gels verändern, können wir sie klebrig machen und in mehreren Schichten zusammenpressen, sodass wir ein größeres Energiepotenzial aufbauen können.“

Mechanische und elektrische Eigenschaften

Die starke Haftung zwischen den Schichten der Gelee-Batterien wird durch tonnenförmige Moleküle, sogenannte Cucurbiturils, ermöglicht, die wie molekulare Handschellen wirken. Diese Bindungen sorgen dafür, dass sich die Gelee-Batterien dehnen lassen, ohne dass sich die Schichten trennen. Wichtig ist dabei natürlich auch, dass die Batterien ihre Leitfähigkeit nicht verlieren.

Professor Oren Scherman, Direktor des Melville-Labors für Polymersynthese und Mitautor der Studie, betont: „Die Fähigkeit, die mechanischen Eigenschaften der Hydrogele präzise zu steuern und die Eigenschaften des menschlichen Gewebes nachzuahmen, macht Hydrogele zu idealen Kandidaten für die Soft-Robotik und Bioelektronik.“

Potenziale für biomedizinische Anwendungen

Nach Auskunft des Forschungsteams eignen sich die Gelee-Batterien durch ihre einzigartigen Eigenschaften besonders gut für biomedizinische Implantate. Da sie weich sind und sich dem menschlichen Gewebe anpassen können, sei die Wahrscheinlichkeit einer Abstoßungsreaktion des Körpers gering. Zudem können die Hydrogele gequetscht werden, ohne ihre ursprüngliche Form dauerhaft zu verlieren, und sie haben die Fähigkeit, sich selbst zu heilen, wenn sie beschädigt werden.

Die Forscher planen nun, weitere Experimente durchzuführen, um die Hydrogele in lebenden Organismen zu testen und ihre Eignung für eine Reihe medizinischer Anwendungen zu bewerten.

Hier geht es zur Studie auf ScienceAdvances

Ein Beitrag von:

  • Dominik Hochwarth

    Redakteur beim VDI Verlag. Nach dem Studium absolvierte er eine Ausbildung zum Online-Redakteur, es folgten ein Volontariat und jeweils 10 Jahre als Webtexter für eine Internetagentur und einen Onlineshop. Seit September 2022 schreibt er für ingenieur.de.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.