Dehnbare Gelee-Batterie soll sich für Gehirnimplantate eignen
Ein Forschungsteam der Universität Cambridge hat weiche, dehnbare „Gelee-Batterien“ entwickelt. Sie lassen sich für tragbare Geräte oder Softrobotik verwenden oder sogar ins Gehirn implantieren, um Medikamente zu verabreichen oder Krankheiten wie Epilepsie zu behandeln.
Inspiriert von den bemerkenswerten Fähigkeiten der Zitteraale, entwickelten Forschende der University of Cambridge eine dehnbare und selbstheilende Gelee-Batterie. Zitteraale nutzen spezialisierte Muskelzellen, die sogenannten Elektrozyten, um elektrische Schläge zu erzeugen und ihre Beute zu betäuben. Das Forschungsteam adaptierte dieses Prinzip und entwickelte geleeartige Materialien, die ebenfalls elektrische Ströme erzeugen können. Die Elektrozyten-ähnlichen Materialien besitzen eine Schichtstruktur, die an klebrige Legosteine erinnert und es ihnen ermöglicht, effizient Strom zu leiten.
Batterie lässt sich um das Zehnfache dehnen
Die neu entwickelten Gelee-Batterien bestehen aus Hydrogelen – dreidimensionalen Netzwerken aus Polymeren, die über 60 % Wasser enthalten. Diese Polymere werden durch reversible On/Off-Wechselwirkungen zusammengehalten, was die mechanischen Eigenschaften des Gelees steuert. Diese Struktur verleiht den Batterien ihre Dehnbarkeit und Leitfähigkeit.
Das Material lässt sich laut Forschungsteam auf mehr als das Zehnfache seiner ursprünglichen Länge dehnen, ohne an Leitfähigkeit zu verlieren. Nach Meinung des Teams ist diese Kombination von Dehnbarkeit und Leitfähigkeit in einem einzigen Material einzigartig und öffnet neue Möglichkeiten für flexible und tragbare Technologien.
Herausforderung bei der Entwicklung der Batterie
Stephen O’Neill, der Erstautor der Studie, erklärt: „Es ist schwierig, ein Material zu entwickeln, das sowohl hoch dehnbar als auch hoch leitfähig ist, da diese beiden Eigenschaften normalerweise im Widerspruch zueinander stehen. Normalerweise nimmt die Leitfähigkeit ab, wenn ein Material gedehnt wird.“
Diese Herausforderung haben die Forschenden erfolgreich gemeistert, indem sie die Gelee-Batterien so konstruierten, dass sie Ionen als Ladungsträger nutzen, ähnlich wie Zitteraale. In der traditionellen Elektronik werden Elektronen als Ladungsträger verwendet, was in starren metallischen Materialien resultiert.
Dr. Jade McCune, Co-Autorin der Studie, ergänzt: „Indem wir die Salzkomponente eines jeden Gels verändern, können wir sie klebrig machen und in mehreren Schichten zusammenpressen, sodass wir ein größeres Energiepotenzial aufbauen können.“
Mechanische und elektrische Eigenschaften
Die starke Haftung zwischen den Schichten der Gelee-Batterien wird durch tonnenförmige Moleküle, sogenannte Cucurbiturils, ermöglicht, die wie molekulare Handschellen wirken. Diese Bindungen sorgen dafür, dass sich die Gelee-Batterien dehnen lassen, ohne dass sich die Schichten trennen. Wichtig ist dabei natürlich auch, dass die Batterien ihre Leitfähigkeit nicht verlieren.
Professor Oren Scherman, Direktor des Melville-Labors für Polymersynthese und Mitautor der Studie, betont: „Die Fähigkeit, die mechanischen Eigenschaften der Hydrogele präzise zu steuern und die Eigenschaften des menschlichen Gewebes nachzuahmen, macht Hydrogele zu idealen Kandidaten für die Soft-Robotik und Bioelektronik.“
Potenziale für biomedizinische Anwendungen
Nach Auskunft des Forschungsteams eignen sich die Gelee-Batterien durch ihre einzigartigen Eigenschaften besonders gut für biomedizinische Implantate. Da sie weich sind und sich dem menschlichen Gewebe anpassen können, sei die Wahrscheinlichkeit einer Abstoßungsreaktion des Körpers gering. Zudem können die Hydrogele gequetscht werden, ohne ihre ursprüngliche Form dauerhaft zu verlieren, und sie haben die Fähigkeit, sich selbst zu heilen, wenn sie beschädigt werden.
Die Forscher planen nun, weitere Experimente durchzuführen, um die Hydrogele in lebenden Organismen zu testen und ihre Eignung für eine Reihe medizinischer Anwendungen zu bewerten.
Hier geht es zur Studie auf ScienceAdvances
Ein Beitrag von: