Mehr als Daten erfassen 08.06.2021, 07:00 Uhr

Denkende T-Shirts: Das leisten Wearables der nächsten Generation

MIT-Forscher haben erstmals Fasern entwickelt, die – in Textilien eingenäht – nicht nur Aktivitäten von Anwendern erfassen. Mit künstlicher Intelligenz werten sie Daten aus und speichern Informationen direkt im System: eine Technologie für Wearables der Zukunft.

Werables mit neuen Funktionen

Nahaufnahme der digitalen Fasern für Wearables auf grünem Stoff.

Foto: Anna Gitelson-Kahn/Roni Cnaani, MIT

Bei Sportlern, aber auch bei Ärzten, gewinnt das Werable Computing seit Jahren an Bedeutung. Anwender tragen Sensoren am Körper, etwa als Bestandteil von Kleidungsstücken. Diese Wearables senden Daten an externe Systeme zur Auswertung, beispielsweise an eine Smartwatch oder an ein Smartphone. Bisher waren elektronische Fasern analog. Sie übertrugen ein kontinuierliches elektrisches Signal.

Ingenieure am Massachusetts Institute of Technology (MIT), Cambridge, gehen einen großen Schritt weiter. Sie zeigen jetzt, dass programmierbare Fasern zu Werables mit neuen, innovativen Leistungen führen. Ihre digitale Faser enthält erstmals einen Speicher, Temperatursensoren und ein trainiertes neuronales Netzwerkprogramm, das Analysen körperlicher Aktivitäten ermöglicht. Entwickler wollen verborgene Muster im menschlichen Körper aufdecken, um die Leistung von Sportlern zu verbessern oder um Krankheiten zu erkennen, weit bevor Symptome auftreten. Ihr Signal ist digital; es gibt nur zwei Zustände, nämlich „0“ und „1“.

Samsung Galaxy Watch 3: Völlig neue Funktionen für ein gesundes Leben

Digitale Fasern für Wearables herstellen 

Die neue Faser besteht aus hunderten quadratischer, kleiner, digitaler Siliziumchips. Alle Bauteile werden in eine Vorform gelegt, mit der sich Polymerfasern herstellen lassen. Durch die präzise Steuerung der Zugabe an flüssigem Polymer gelang es den MIT-Ingenieuren, eine Faser mit kontinuierlicher elektrischer Verbindung zwischen den Chips über eine Länge von mehreren zehn Metern herstellen.

Stellenangebote im Bereich Elektrotechnik, Elektronik

Elektrotechnik, Elektronik Jobs
TÜV Hessen-Firmenlogo
Sachverständiger Elektrotechnik (m/w/d) TÜV Hessen
Frankfurt am Main Zum Job 
Hochschule für angewandte Wissenschaften Kempten-Firmenlogo
Professur (w/m/d) Elektrische Antriebstechnik Hochschule für angewandte Wissenschaften Kempten
Kempten Zum Job 
PFISTERER Kontaktsysteme GmbH-Firmenlogo
High Voltage Testing Specialist (w/m/d) PFISTERER Kontaktsysteme GmbH
Winterbach Zum Job 
Sanofi-Aventis Deutschland GmbH-Firmenlogo
Ingenieur-Trainee in der Pharmazeutischen Produktion - all genders Sanofi-Aventis Deutschland GmbH
Frankfurt am Main Zum Job 
Bundesnetzagentur-Firmenlogo
Leitung der Außenstelle Hamburg (w/m/d) Bundesnetzagentur
Hamburg Zum Job 
ONTRAS Gastransport GmbH-Firmenlogo
Projektingenieur Wasserstoff (m/w/d) ONTRAS Gastransport GmbH
Leipzig Zum Job 
Berufsgenossenschaft Rohstoffe und chemische Industrie (BG RCI)-Firmenlogo
Sicherheitsingenieurin / Sicherheitsingenieur (m/w/d) regionale Betreuung in der Region Süddeutschland Berufsgenossenschaft Rohstoffe und chemische Industrie (BG RCI)
Stuttgart, Ulm, München, Augsburg, Würzburg Zum Job 
Synthos Schkopau GmbH-Firmenlogo
Maintenance Engineer (m/w/d) Synthos Schkopau GmbH
Schkopau Zum Job 
aedifion-Firmenlogo
(Junior) Engineer - Smart Building (w/m/d) aedifion
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur/in (m/w/d) für Tunnelsicherheit Die Autobahn GmbH des Bundes
Stuttgart Zum Job 
SE Tylose GmbH & Co. KG-Firmenlogo
Ingenieur der Mess- und Regeltechnik (m/w/d) für Investitionsprojekte SE Tylose GmbH & Co. KG
Wiesbaden Zum Job 
Bundesamt für Strahlenschutz-Firmenlogo
Ingenieur*in (FH/Bachelor) (m/w/d) Elektrotechnik, Physik, Medizintechnik, Informationstechnik im "Kompetenzzentrum Elektromagnetische Felder" der Abteilung "Wirkungen und Risiken ionisierender und nichtionisierender Strahlung" Bundesamt für Strahlenschutz
Oberschleißheim (bei München) Zum Job 
Stuttgart Netze GmbH-Firmenlogo
(Junior) Ingenieur Elektrotechnik Projektierung (w/m/d) Stuttgart Netze GmbH
Stuttgart Zum Job 
VIVAVIS AG-Firmenlogo
Sales Manager Bahn (m/w/d) VIVAVIS AG
Berlin, Home-Office Zum Job 
Technische Hochschule Deggendorf-Firmenlogo
Forschungsprofessur oder Nachwuchsprofessur (m/w/d) Industrielle Robotik Technische Hochschule Deggendorf
Bundesamt für Wirtschaft und Ausfuhrkontrolle-Firmenlogo
Elektro- bzw. Informationstechnikerinnen und -techniker (w/m/d) (FH-Diplom/Bachelor) für den Bereich Exportkontrolle Bundesamt für Wirtschaft und Ausfuhrkontrolle
Eschborn Zum Job 
Kraftfahrt-Bundesamt (KBA)-Firmenlogo
Ingenieurin / Ingenieur (m/w/d) (FH-Diplom/Bachelor) für den Arbeitsbereich »Konformitätsprüfung Produkt (CoP-P)« Kraftfahrt-Bundesamt (KBA)
Dresden Zum Job 
Landeshauptstadt München-Firmenlogo
Projektingenieur*in der Fachrichtung Elektrotechnik (w/m/d) Landeshauptstadt München
München Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Projektingenieurin / Projektingenieur im Bereich Ladeinfrastruktur (w/m/d) Die Autobahn GmbH des Bundes
Hannover Zum Job 
THU Technische Hochschule Ulm-Firmenlogo
W2-Professur "Elektrische Antriebe" THU Technische Hochschule Ulm

Dieser Hightech-Faden erwies sich bei Tests als dünn und flexibel. Er konnte ohne Probleme durch eine Nadel gezogen und danach normal zu Textilien verarbeitet werden. „Wenn man ihn in ein Hemd steckt, spürt man den Faden überhaupt nicht; man würde nicht wissen, dass er da ist“, erzählt Gabriel Loke. Als Doktorand am MIT ist er am Projekt beteiligt. Loke verweist auch auf die Möglichkeit, solche Gewebe normal zu waschen. Nach aktuellem Kenntnisstand überleben es die Gewebe, mindestens zehnmal gewaschen werden, ohne Schaden zu nehmen. Die Experimente wurden zusammen mit Textilwissenschaftlern der Rhode Island School of Design durchgeführt.

Innovative Wearables erfassen nicht nur Daten…

Dadurch eröffneten sich neue Möglichkeiten, und einige bekannte Probleme von Funktionsfasern würden gelöst, sagt Loke. Als Beispiele nennt er die Option, einzelne Elemente innerhalb von Fasern gezielt anzusteuern. Zusammen mit Kollegen hat er eine digitale Adressierungsmethode entwickelt, die es erlaubt, die Funktionalität eines Elements zu aktivieren, ohne alle Elemente einzuschalten. Damit nicht genug: Jede digitale Faser kann auch Daten vor Ort ablegen. Forscher waren in der Lage, Informationen auf die Faser zu schreiben, zu speichern und zu lesen, einschließlich einer 767 Kilobit großen Vollfarb-Kurzfilmdatei und einer 0,48 Megabyte großen Musikdatei. Die Dateien lassen sich zwei Monate lang ohne Strom speichern.

Das können in der Praxis recht naheliegend unterschiedliche Vitalparameter sein. Zusammen mit Kollegen entwickelte Loke aber auch einige – wie er selbst schreibt – „verrückte Ideen“. Die Hightech-Fasern könnten beispielsweise Musik aufnehmen und als Audiodatei speichern. Geht es um Aspekte der Nachhaltigkeit, eignen sich solche Materialien, um die Geschichte ihrer Entstehung direkt zu dokumentieren.

Künstliche Intelligenz: Forscher schützen Patienten mit einer genialen Idee

Wearables können auch KI

Mit ihren Fasern wagen sich die MIT-Ingenieure aber auch auf das weite Feld der künstlichen Intelligenz (KI) vor. Innerhalb des Datenspeichers aus einzelnen Fasern entstand ein neuronales Netzwerk mit 1.650 Verbindungen. Die Faser wird durch ein kleines externes Gerät gesteuert.

Wie lässt sich dieses Prinzip praktisch nutzen? Für ein Experiment stellten Experten der Rhode Island School of Design mehrere Hemden mit Fasern im Achselbereich her. Anschließend trugen freiwillige Probenden die Funktionskleidung bei verschiedenen körperlichen Aktivitäten. Das System erfasste und speicherte wie geplant 270 Minuten lang Daten zur Körperoberflächentemperatur einer Person. Anschließend gelang es ihnen per KI, Zusammenhänge mit unterschiedlichen Bewegungsmustern herzustellen. Anhand dieser Daten konnte die Faser mit einer Genauigkeit von 96% feststellen, welcher Aktivität die Person, die das Shirt trug, nachging.

Perspektiven für die Anwendung

Momentan handelte es sich nur um ein Pilotprojekt. Je nach Art der verwendeten KI könnten digitale Fasern unterschiedliche Vitalparameter erfassen. Diese Big Data seien optimal für Algorithmen aus dem Bereich des maschinellen Lernens, erklärt Loke. „Diese Art von Gewebe könnte Quantität und Qualität von Open-Source-Daten liefern, um neue Muster in Körperdaten zu entdecken.“ Das können beispielsweise Veränderungen der Atmung, der Herzfrequenz beziehungsweise der Muskelaktivität sein. Änderungen erkennt man in Echtzeit – weit bevor Patienten körperliche Beschwerden haben.

Mehr zum Thema Wearables, smarte Technologien:

Ein Beitrag von:

  • Michael van den Heuvel

    Michael van den Heuvel hat Chemie studiert. Unter anderem arbeitet er für Medscape, DocCheck, für die Universität München und für pharmazeutische Fachmagazine. Seit 2017 ist er selbstständiger Journalist und Gesellschafter von Content Qualitäten. Seine Themen: Chemie/physikalische Chemie, Energie, Umwelt, KI, Medizin/Medizintechnik.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.