Diese revolutionären Sensoren lassen sich auf die Haut drucken
Forschende aus Cambridge haben bioelektronische „Spinnenseide“ entwickelt, aus der sich Sensoren herstellen lassen, die sich fast überall anbringen lassen – auch auf Haut.
Forscherinnen und Forscher aus Cambridge haben leichte und umweltfreundliche Sensoren nach dem Vorbild der Spinnenseide entwickelt. Diese Sensoren lassen sich nahtlos in biologische Oberflächen integrieren und ermöglichen verschiedene Anwendungen in den Bereichen Gesundheitsüberwachung und virtuelle Realität. Sie können unter anderem direkt und unsichtbar auf biologische Oberflächen wie Finger oder Blütenblätter gedruckt werden.
50-mal dünner als ein menschliches Haar
Inspiriert von der Anpassungsfähigkeit und Haftfähigkeit der Spinnenseide, integriert diese Methode die Bioelektronik, so dass verschiedene Sensorfunktionen hinzugefügt werden können. Die extrem leichten Fasern, die mindestens 50-mal dünner sind als ein menschliches Haar, wurden zum Beispiel auf einen Löwenzahnsamen gedruckt, ohne dessen Struktur zu beschädigen. Auf die menschliche Haut gedruckt, passen sich die Fasersensoren der Haut an, ohne die Schweißporen zu blockieren.
Die umweltfreundliche Methode könnte laut Forschungsteam in vielen Bereichen eingesetzt werden, von der Gesundheitsfürsorge über virtuelle Realität und elektronische Textilien bis hin zur Umweltüberwachung. Die Forschungsergebnisse wurden in der Fachzeitschrift Nature Electronics veröffentlicht.
Revolutionäre Einsatzmöglichkeiten
Obwohl die menschliche Haut sehr empfindlich ist, könnten elektronische Sensoren auf der Haut die Interaktion mit der Umwelt revolutionieren. Sensoren, die direkt auf die Haut aufgedruckt werden, könnten zur Gesundheitsüberwachung, zum Verständnis der Hautempfindungen oder zur Verbesserung von Virtual-Reality-Erfahrungen eingesetzt werden.
Derzeit weit verbreitete tragbare Technologien wie Smartwatches sind oft unbequem und stören die natürliche Wahrnehmung der Haut. Professor Yan Yan Shery Huang vom Cambridge Department of Engineering betont, wie wichtig eine nahtlose Schnittstelle zwischen Sensoren und biologischen Oberflächen ist, um die Interaktion mit dem Nutzer nicht zu beeinträchtigen.
Das macht die „Spinnenseide“-Sensoren besser als andere Sensoren
Verschiedene Methoden zur Herstellung tragbarer Sensoren haben ihre Nachteile, wie das Forschungsteam erläutert. Flexible Elektronik wird oft auf Plastikfolien gedruckt, die weder Gase noch Feuchtigkeit durchlassen, ähnlich wie Frischhaltefolie. Andere gasdurchlässige Elektronik stört die normale Wahrnehmung und ist energieintensiv in der Herstellung.
Beim 3D-Druck entsteht weniger Abfall, aber die Geräte werden dicker. Das Spinnen elektronischer Fasern erzeugt unsichtbare Geräte, die aber oft nicht empfindlich genug sind. Nun kommt das Team aus Cambridge ins Spiel, das die bereits beschriebene Bioelektronik entwickelt hat, die sich direkt auf biologische Oberflächen drucken lässt.
Die Technik nutzt minimale Materialmengen, um robuste und maßgeschneiderte Strukturen zu erzeugen. Entwickelt wurde die bioelektronische „Spinnenseide“ aus Polypolystyrolsulfonat, Hyaluronsäure und Polyethylenoxid entwickelt. Diese Fasern werden bei Raumtemperatur aus einer wässrigen Lösung hergestellt und können sich an Mikrostrukturen wie Fingerabdrücke anpassen.
Herstellung benötigt nur wenig Energie
Die meisten hochauflösenden Sensoren werden in Reinräumen unter Verwendung giftiger Chemikalien hergestellt. Die Sensoren aus Cambridge hingegen verbrauchen laut Forschungsteam nur einen Bruchteil der Energie herkömmlicher Sensoren und können fast überall hergestellt werden. Sie sind reparierbar und produzieren weniger als ein Milligramm Abfall.
„Unsere Technologie ermöglicht es, Sensoren fast überall anzubringen und bei Bedarf zu reparieren – ohne große Maschinen oder zentrale Produktionsstätten“, sagt Huang. „Diese Sensoren können nach Bedarf hergestellt werden und erzeugen nur minimalen Abfall und Emissionen.“
Anwendungen sehen die Forschenden in der Gesundheitsüberwachung, der virtuellen Realität, der Präzisionslandwirtschaft und der Umweltüberwachung. In Zukunft könnten weitere funktionale Materialien integriert werden, um Sensoren mit zusätzlichen Funktionen wie Anzeige, Berechnung und Energieumwandlung zu entwickeln. Die Forschungsergebnisse werden von Cambridge Enterprise vermarktet.
Ein Beitrag von: