Akkus: Forscher lösen endlich Problem bei Superkondensatoren
Wie kann es gelingen, dass sich Batterien schneller wieder aufladen und eine längere Lebensdauer haben? Die Antwort könnten Mikro-Superkondensatoren sein. Schwedische Forschende haben jetzt einen Weg gefunden, diese kleinen Wunderwerke problemlos herzustellen.
Wer hätte sich vor 25 Jahren vorstellen können, dass Akkus in unserem Alltag mal eine so große Rolle spielen würden? Inzwischen ist ihre Leistung unter anderem für Smartphones und Laptops ein großes Verkaufsargument. Im Bereich der Elektromobilität geht es noch weiter. Denn die Akzeptanz der gesamten Technologie hängt in einem wesentlichen Maße von der Leistung der Batterien und damit der Reichweite der E-Autos ab. Jede Möglichkeit, Akkus zu verbessern, wird also dringend benötigt. Großes Potenzial steckt dabei in Superkondensatoren. Bisher waren sie allerdings zu groß, um beispielsweise in Smartphones zu passen. Wissenschaftlerinnen und Wissenschaftler der Chalmers University of Technology in Schweden verkünden nun einen Durchbruch. Sie haben einen Weg gefunden, Mikro-Superkondensatoren so zu gestalten, dass sie einerseits deutlich verkleinert werden können und andererseits eine kommerzielle Produktion möglich wäre.
Superkondensatoren pushen die Leistungen der Akkus
Das Prinzip der Superkondensatoren ist schnell erklärt: Sie bestehen aus zwei elektrischen Leitern, die durch eine Isolierschicht voneinander getrennt sind. Sie können elektrische Energie speichern und sind in mancherlei Hinsicht dabei effizienter als ein gewöhnlicher Akku: Sie laden sich viel schneller wieder auf, verteilen die Energie besser und haben eine längere Lebensdauer. Das heißt, sie überstehen deutlich mehr Lade- und Entladungszyklen ohne nennenswerten Leistungsverlust.
Besonders interessant werden diese Eigenschaften, wenn ein Superkondensator in Kombination mit einer Batterie eingesetzt wird – er verlängert dann ihre Lebensdauer um ein Vielfaches. Die schwedischen Wissenschaftlerinnen und Wissenschaftler schätzen die Größenordnung beispielsweise bei einem Elektroauto so ein, dass dessen Akku viermal so lange halten würde. Das hätte auf der einen Seite erhebliche Vorteile für die Verbraucher, auf der anderen Seite würden die Superkondensatoren zur Nachhaltigkeit der Batterien beitragen.
Batterierecycling: So wird es effizient, ökologisch und wirtschaftlich
Mikro-Superkondensatoren müssen in System-on-a-Chip-Lösungen passen
So gut dieses Konzept klingt, in der Praxis sind Superkondensatoren für den Einsatz in kleinen Elektrogeräten schlicht und einfach zu groß. Sie hätten in etwa die gleichen Abmessungen wie die Batterie, mit der sie kombiniert werden. Das funktioniert weder für ein Smartphone noch für ein E-Auto. Das Problem ist bekannt und viele Forschungsteams arbeiten daran. Agin Vyas ist Doktorand am Department of Microtechnology and Nanoscience der Chalmers University of Technology. Er glaubt, dass er gemeinsam mit seinen Kolleginnen und Kollegin den Schlüssel gefunden hat.
In ihrem Fokus stand die Entwicklung von Mikro-Superkondensatoren. Die sind so winzig, dass sie in System-on-a-Chip-Lösungen integriert werden können. Dafür müssen sie mit anderen Elementen im Schaltkreis kompatibel sein. Wichtig ist außerdem eine gewisse Flexibilität, also die Möglichkeit, sie an verschiedene Anwendungsbereiche anzupassen.
Verschiedene Kombinationen aus Superkondensatoren und Akkus
Tatsächlich haben die Forschenden Mikro-Superkondensatoren entwickelt, die alle Anforderungen erfüllen. Vyas erklärt: „Wir haben eine Methode verwendet, die als Spin-Coating bekannt ist, eine Eckpfeilertechnik in vielen Herstellungsprozessen. Dadurch konnten wir verschiedene Elektrodenmaterialien wählen. Wir verwenden auch Alkylaminketten in reduziertem Graphenoxid, um zu zeigen, wie dies zu einer höheren Lade- und Speicherkapazität führt.“
Diese Herstellungsmethode könnte tatsächlich den lange erwarteten Durchbruch bringen. Denn sie ist skalierbar und würde zugleich die Kosten für die Produktion der Superkondensatoren senken. „Wenn man über neue Technologien spricht, vergisst man leicht, wie wichtig die Herstellungsmethode ist, damit sie tatsächlich kommerziell produziert werden können und einen Einfluss auf die Gesellschaft haben“, sagt Vyas. „Deswegen haben wir Methoden entwickelt, die in der Produktion wirklich funktionieren können.“
Noch ein paar Worte zum Thema Flexibilität: Die Forschenden haben auch ein Verfahren vorgestellt, mit dem sie Mikro-Superkondensatoren auf bis zu zehn verschiedenen Materialien in einem einheitlichen Prozess herstellen können. Damit haben sie eine günstige Methode geschaffen die Eigenschaften der Geräte auf die jeweils geplante Anwendung zuzuschneiden.
Mehr Beiträge aus der Batterieforschung:
Ein Beitrag von: