Organische Fototransistoren: Effizienzsprung durch molekulares Design
Forscher der Universität Münster haben einen molekularen Fototransistor entwickelt, der viel effizienter arbeitet als vergleichbare Wandler. Fototransistoren werden zum Beispiel in der Kommunikationstechnologie oder in der elektronischen Bildgebung eingesetzt.
Fototransistoren sind wichtige Baueinheiten in der Optoelektronik. Sie fangen Licht ein und verwandeln es in elektrische Signale. Je besser sie das machen, desto höher ist die Leistungsfähigkeit des jeweiligen Fototransistors. Die effiziente Umwandlung von Licht in elektrische Signale ist vor allem für die elektronische Bildgebung, für optische Kommunikationstechnologien und in der biomedizinischen Sensorik wichtig.
Bei einem Fototransistor fällt Licht auf den lichtempfindlichen Bereich – die Fotodiode – die ansonsten von einem geschlossenen, lichtundurchlässigen Gehäuse umgeben ist. Durch den photoelektrischen Effekt fließt ein geringer Fotostrom, der im Transistor zum Kollektorstrom verstärkt wird. Der Strom wird je nach Transistortyp um den Faktor 100 bis 1.000 verstärkt. Der erzeugte Kollektorstrom ist also um diesen Faktor größer als der Fotostrom aus der Fotodiode (ohne Transistor).
DPA-Moleküle wandeln Licht effizient in Strom um
Wissenschaftler des Physikalischen Instituts und des Centrums für Nanotechnologie (CeNTech) der Universität Münster haben nun in Kooperation mit chinesischen Partnern einen neuartigen Fototransistor entwickelt, der mit kleinen, organischen Molekülen namens 2,6-Diphenylanthrazen (DPA) arbeitet. Derzeit verfügbare organische Fototransistoren (OFT) verwenden hingegen große Moleküle in Form von langen Polymerketten. Nach Aussage der Forscher wandeln die neu entwickelten Fototransistoren Licht mit bisher unerreichter Effizienz in elektrische Signale um.
Stark fluoreszierende Anthrazen-Einheit als halbleitender Kern
Die im neuen OFT verwendeten DPA-Moleküle besitzen eine stark fluoreszierende Anthrazen-Einheit, die als halbleitender Kern fungiert. Mehrere sogenannte Phenylgruppen machen den Ladungsträger mobiler und verbessern die optoelektronischen Eigenschaften. Die aus DPA-Molekülen bestehenden Fototransistoren sind nach Aussage der Forscher extrem lichtempfindlich und reagieren deswegen umso sensibler auf Lichtimpulse.
„Die erreichten Werte überragen diejenigen aller anderen bekannten OFT und gehören zu den besten aller bisher bekannten Fototransistoren, in vielen Bereichen sogar denen der anorganischen“, erklärt Deyang Ji, der die neuen Fototransistoren im Physikalischen Institut maßgeblich mitentwickelt hat. Die WWU-Forscher um Ji haben die Ergebnisse im Fachmagazin „Nature Communications“ veröffentlicht.
Effizienzsteigerungen: Experimentelle Daten plus Simulationen
Die Effizienzsteigerungen des neuen Fototransistors seien vor allem durch die Kombination von experimentellen Daten und Simulationen möglich geworden, ergänzt Saeed Amirjalyer, Gruppenleiter am CeNTech und Co-Autor der Veröffentlichung. „So konnten wir die hohen Leistungsdaten der entwickelten Fototransistoren quantitativ verstehen, was eine gezielte Optimierung ermöglicht“, so Amirjalyer. Die geeignete Wahl organischer Moleküle habe die Tür zur technologischen Anwendung geöffnet. Vor allem im Bereich der Sensorik sowie der Datenübertragung sehen die Wissenschaftler verschiedene Anwendungsgebiete.
OFT besonders für flexible elektronische Elemente geeignet
Organische Fototransistoren eignen sich besonders für die Entwicklung von biegsamen und faltbaren elektronischen Komponenten. Sie sind mechanisch flexibel und zudem leicht, preiswert und verhältnismäßig einfach herzustellen – auch für große Flächen. In den neu entwickelten OFT können die Wissenschaftler die physikalischen Eigenschaften in weiten Bereichen exakt einstellen. Hierfür nehmen sie gezielte Änderungen der Molekülstruktur vor. Damit schließen sie hinsichtlich der Leistung zu anorganischen Fototransistoren und Hybridsystemen auf, die die Nase bis dato deutlich vorne hatten.
Eine der Hauptursachen für den bisherigen Rückstand marktüblicher OFT: Die in den organischen, fotoresponsiven Materialien verwendeten Ladungsträger sind weniger beweglich. Sie können Ladungen weniger gut transportieren und einfangen. Der neu entwickelte organische Fototransistor hat diesen Nachteil ausgeglichen.
Mehr zum Thema „Optoelektronik“:
Ein Beitrag von: