Spektroskopie an Atomen 04.07.2014, 08:30 Uhr

Glasfasern mit hohlem Minikern halten selbst UV-Laserlicht stand

Glasfasern mit einem winzigen Kern von 20 Mikrometern Durchmesser halten selbst Laserlicht im ultravioletten Spektralbereich stand. Die Erfindung der Max-Planck-Forscher aus Erlangen soll der Präzisionspektroskopie an Atomen und den Entwicklern der Quantencomputer zugute kommen. 

Mikroskopische Aufnahme der Glasfaser: Die Hohlkammer in der Mitte ist nur 20 Tausendstel Millimeter breit. Sie macht die verlustfreie Übertragung des UV-Laserlichts möglich. 

Mikroskopische Aufnahme der Glasfaser: Die Hohlkammer in der Mitte ist nur 20 Tausendstel Millimeter breit. Sie macht die verlustfreie Übertragung des UV-Laserlichts möglich. 

Foto: PTB

Mit ultraviolettem Laserlicht wollen Physiker indirekt in Ionen, also elektrisch geladene Teilchen, und komplette Atome schauen. Biologen können damit Vorgänge in lebenden Zellen sichtbar machen, Klimaforscher Treibhausgase in der Atmosphäre aufspüren. Dazu müssen sie Photodioden, die das Laserlicht erzeugen, direkt auf die Probe halten.

Übliche Glasfasern funktionieren bislang allerdings nicht als Lichtwellenleiter für den Transport der Lichtteilchen. Der UV-Laserstrahl wird vom Glas verschluckt. Genau die gleiche Wirkung hat beispielsweise Fensterglas. Das UV-Licht der Sonne dringt nicht durch, so dass die Haut nicht gebräunt wird. Während Fensterglas so dick ist, dass die paar Macken, die das UV-Licht hineinschlägt, nicht weiter auffallen, hat Licht mit dieser Frequenz verheerende Folgen für die extrem feinen Lichtwellenleiter. Sie werden innerhalb kurzer Zeit zerstört.

Glasfasern haben 20 Mikrometer kleinen Hohlkern

Robuster sind die Glasfasern, die am Max-Planck-Institut für die Physik des Lichts in Erlangen entwickelt worden sind. Anders als gängige Glasfasern besitzen sie keinen festen Kern aus hochreinem Spezialglas, sondern einen Hohlraum mit einem Durchmesser von 20 Tausendstel Millimetern.

Gemessene Nahfeld-Intensitäts-Profile einer Faser bei verschiedenen Einstrahlrichtungen des UV-Strahls. Die Profile zeigen, dass das Licht einmodig ist – es wird also mit einer räumlichen Intensitätsverteilung geleitet. 

Gemessene Nahfeld-Intensitäts-Profile einer Faser bei verschiedenen Einstrahlrichtungen des UV-Strahls. Die Profile zeigen, dass das Licht einmodig ist – es wird also mit einer räumlichen Intensitätsverteilung geleitet. 

Quelle: PTB

Stellenangebote im Bereich Elektrotechnik, Elektronik

Elektrotechnik, Elektronik Jobs
RheinEnergie AG-Firmenlogo
Planungsingenieur / Projektleiter Elektrotechnik (m/w/d) RheinEnergie AG
Festo SE & Co. KG-Firmenlogo
Product Owner for Systems Simulation Engineering (m/w/d) Festo SE & Co. KG
Esslingen Zum Job 
Dürr Aktiengesellschaft-Firmenlogo
Inbetriebnehmer / Mechatroniker für Luft und Wärmetechnik (m/w/d) Dürr Aktiengesellschaft
Bietigheim-Bissingen Zum Job 
WITTENSTEIN SE-Firmenlogo
Produktmanager (w/m/d) Servogetriebe WITTENSTEIN SE
Igersheim-Harthausen Zum Job 
Schleifring GmbH-Firmenlogo
Testingenieur für die Produktqualifikation (m/w/d) Schleifring GmbH
Fürstenfeldbruck Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur (w/m/d) C-ITS Entwicklung Die Autobahn GmbH des Bundes
Frankfurt am Main Zum Job 
DB AG-Firmenlogo
Ingenieur:in Elektrotechnik DB AG
verschiedene Standorte Zum Job 
Kromberg & Schubert Automotive GmbH & Co. KG-Firmenlogo
Ingenieur Datenmanagement / -prozesse (m/w/d) Kromberg & Schubert Automotive GmbH & Co. KG
Abensberg Zum Job 
Recogizer-Firmenlogo
Projektingenieur (m/w/d) KI-gestützte CO2-Reduktion Recogizer
Pfisterer Kontaktsysteme GmbH-Firmenlogo
High Voltage Testing Specialist (w/m/d) Pfisterer Kontaktsysteme GmbH
Winterbach Zum Job 
über ifp | Executive Search. Management Diagnostik.-Firmenlogo
Produktionsleiter:in über ifp | Executive Search. Management Diagnostik.
Netzgesellschaft Potsdam GmbH-Firmenlogo
Betriebsingenieur (m/w/d) Elektrotechnik/Energietechnik für die Niederspannung bzw. Hochspannung Netzgesellschaft Potsdam GmbH
Potsdam Zum Job 
Truma Gerätetechnik GmbH & Co. KG-Firmenlogo
Elektroniker (m/w/d) im Bereich Fahrzeugelektronik Truma Gerätetechnik GmbH & Co. KG
Putzbrunn Zum Job 
Netzgesellschaft Potsdam GmbH-Firmenlogo
Ingenieur Strategische Netzplanung (m/w/d) für Strom, Datennetze, Infokabel, 450 MHz Netzgesellschaft Potsdam GmbH
Potsdam Zum Job 
Deutsche Rentenversicherung Bund-Firmenlogo
Teamleiter*in Bauprojekte Elektrotechnik (m/w/div) Deutsche Rentenversicherung Bund
BG ETEM-Firmenlogo
Dipl.-Ing. (Uni/TU/TH), M. Sc./Eng. (m/w/d) im Bereich Fachkompetenzcenter Elektrische Gefährdungen BG ETEM
GIBY GmbH-Firmenlogo
Service Techniker (m/w/d) für Telekommunikationsnetze GIBY GmbH
Leipzig Zum Job 
Schleifring GmbH-Firmenlogo
Vertriebsingenieur (m/w/d) Schleifring GmbH
Fürstenfeldbruck Zum Job 
Landesbetrieb Bau und Immobilien Hessen (LBIH)-Firmenlogo
Ingenieur (m/w/d) Elektrotechnik Landesbetrieb Bau und Immobilien Hessen (LBIH)
Bad Nauheim, Gießen Zum Job 
NKT Group GmbH-Firmenlogo
Prüfingenieur mobile Prüfeinrichtung (m/w/d) NKT Group GmbH

Eingehüllt wird der feine Hohlzylinder von einer so genannten Kagomé-Struktur, einem speziellen Muster aus regelmäßig angeordneten Drei- und Sechsecken. Das UV-Licht flutscht gewissermaßen hindurch. An der Kagomé-Struktur prallt es ab wie ein Fußball von der Querlatte des Tors. Wie genau das passiert, können nicht einmal die Erlanger Forscher erklären. Aber es funktioniert.

Erster Anwendungstest mit Bravour bestanden

Ob das UV-Licht tatsächlich keinen Schaden anrichtet, wollten die Erlanger Physiker von einer unabhängigen Institution überprüfen lassen: der Physikalisch-Technischen Bundesanstalt (PTB) in Braunschweig. Sie speisten einen UV-Strahl mit einer Wellenlänge von 280 Nanometern mit einer Leistung von 15 Milliwatt ein, einer für die Übermittlung von Daten via Licht üblichen Leistung.

Nach mehr als 100 Stunden konnten die Prüfer keine Schäden feststellen. Bei einem ersten Anwendungstest untersuchten sie mit Erfolg den inneren Zustand von Ionen, die sie zuvor isoliert, also gewissermaßen in einen Käfig gesperrt hatten. Das könnte auch den Entwicklern des sagenumwobenen Quantencomputers helfen. Denn Veränderungen des inneren Zustands repräsentieren die digitalen Informationseinheiten Eins und Null.

Ein Beitrag von:

  • Wolfgang Kempkens

    Wolfgang Kempkens studierte an der RWTH Aachen Elektrotechnik und schloss mit dem Diplom ab. Er arbeitete bei einer Tageszeitung und einem Magazin, ehe er sich als freier Journalist etablierte. Er beschäftigt sich vor allem mit Umwelt-, Energie- und Technikthemen.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.