Durchbruch in der Materialforschung 25.10.2024, 10:07 Uhr

Hydrogel trifft Halbleiter: Neue Schnittstelle für Bioelektronik

Hydrogel und Halbleiter vereint: Eine neue Technologie verbessert die Verbindung von Gewebe und Elektronik und bietet zahlreiche medizinische Anwendungsmöglichkeiten.

Hydrogel

Dieses Hydrogel hat Halbleiterfähigkeiten und kann Informationen zwischen lebendem Gewebe und Maschine übertragen.

Foto: UChicago Pritzker School of Molecular Engineering / John Zich

Die Verbindung von Elektronik und lebendem Gewebe hat in der Medizintechnik eine neue Dimension erreicht. Eine neue Technologie, die Hydrogel mit Halbleitern kombiniert, bietet eine innovative Lösung für die Herausforderungen in der Bioelektronik. Diese Entwicklung könnte nicht nur die Funktionalität von implantierbaren Geräten wie Herzschrittmachern und Biosensoren verbessern, sondern auch zahlreiche nicht-chirurgische Anwendungen ermöglichen.

Die Herausforderung der Materialkombination

Das perfekte Material für die Verbindung zwischen Elektronik und lebendem Gewebe sollte weich, elastisch und wasseranziehend sein – Eigenschaften, die Hydrogelen zugeschrieben werden. Halbleiter hingegen, die als Schlüsselmaterialien für bioelektronische Geräte wie Herzschrittmacher oder Sensoren dienen, sind spröde und wasserabweisend.

Dies stellt eine große Herausforderung dar, denn um funktional zu sein, muss das Material sowohl die mechanischen Eigenschaften von Gewebe als auch die elektronischen Fähigkeiten eines Halbleiters vereinen.

Durchbruch in der Materialforschung

Ein Forscherteam der Pritzker School of Molecular Engineering (PME) in Chicago unter der Leitung von Assistenzprofessor Sihong Wang hat nun einen Weg gefunden, diese beiden Welten zu verbinden. Ihre Arbeit, veröffentlicht in der Fachzeitschrift Science, beschreibt die Entwicklung eines Hydrogels, das gleichzeitig als leistungsfähiger Halbleiter fungiert.

Stellenangebote im Bereich Elektrotechnik, Elektronik

Elektrotechnik, Elektronik Jobs
Albtal-Verkehrs-Gesellschaft mbH-Firmenlogo
Projektleiter*in Elektrotechnik Verkehrsanlagen (m/w/d) Elektroingenieur*in oder Techniker*in Albtal-Verkehrs-Gesellschaft mbH
Karlsruhe Zum Job 
Die Autobahn GmbH des Bundes Niederlassung Nordbayern-Firmenlogo
Ingenieur Elektrotechnik / Bauingenieur (w/m/d) Ladeinfrastruktur Die Autobahn GmbH des Bundes Niederlassung Nordbayern
Nürnberg Zum Job 
Bayerisches Staatsministerium für Wohnen, Bau und Verkehr-Firmenlogo
Traineeprogramm - Bachelor Fachrichtung Maschinenbau / Energie- und Gebäudetechnik (m/w/d) Bayerisches Staatsministerium für Wohnen, Bau und Verkehr
bayernweit Zum Job 
Bayerisches Staatsministerium für Wohnen, Bau und Verkehr-Firmenlogo
Traineeprogramm - Bachelor Fachrichtung Maschinenbau / Energie- und Gebäudetechnik (m/w/d) Bayerisches Staatsministerium für Wohnen, Bau und Verkehr
Nord-Micro GmbH & Co. OHGa part of Collins Aerospace-Firmenlogo
Projekt- / Produktingenieur (m/w/d) Nord-Micro GmbH & Co. OHGa part of Collins Aerospace
Frankfurt am Main Zum Job 
Fresenius Kabi-Firmenlogo
Instandhalter (m/w/d) Prozesstechnik - API Herstellung Fischöl Fresenius Kabi
Friedberg (Hessen) Zum Job 
B. Braun Melsungen AG-Firmenlogo
Project Manager (w/m/d) Pre-Development B. Braun Melsungen AG
Melsungen Zum Job 
Hamburger Stadtentwässerung AöR ein Unternehmen von HAMBURG WASSER-Firmenlogo
Ingenieur (m/w/d) Elektrotechnik als Projektleiter Hamburger Stadtentwässerung AöR ein Unternehmen von HAMBURG WASSER
Hamburg Zum Job 
THOST Projektmanagement GmbH-Firmenlogo
Wirtschaftsjurist*in / Ingenieur*in (m/w/d) für Contract & Claimsmanagement in Projektender Energiewende THOST Projektmanagement GmbH
Stuttgart, Mannheim Zum Job 
RES Deutschland GmbH-Firmenlogo
Head of Engineering / Leitung technische Planung Wind- & Solarparks (m/w/d) RES Deutschland GmbH
Vörstetten Zum Job 
MEWA Textil-Service SE & Co. Management OHG-Firmenlogo
Projektmanager (m/w/d) PMO Business Transformation MEWA Textil-Service SE & Co. Management OHG
Wiesbaden Zum Job 
MEWA Textil-Service SE & Co. Management OHG-Firmenlogo
Projektingenieur (m/w/d) Elektrotechnik MEWA Textil-Service SE & Co. Management OHG
Wiesbaden Zum Job 
KÜBLER GmbH-Firmenlogo
Techniker / Ingenieur / Fachplaner / TGA (m/w/d) Heizungstechnik und Elektro KÜBLER GmbH
Ludwigshafen Zum Job 
WPW JENA GmbH-Firmenlogo
Projektingenieur Elektroplanung (m/w/d) WPW JENA GmbH
Jena, hybrides Arbeiten Zum Job 
Bundesamt für Bauwesen und Raumordnung-Firmenlogo
Ingenieurin/Ingenieur (w/m/d) für die Koordination der Fachrichtung Elektrotechnik bzw. Nachrichtentechnik Bundesamt für Bauwesen und Raumordnung
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
fbw | Fernwärmegesellschaft Baden-Württemberg mbH-Firmenlogo
Elektroingenieur (m/w/d) (Ingenieur für Elektrotechnik, Energie- oder Versorgungstechnik o. ä.) fbw | Fernwärmegesellschaft Baden-Württemberg mbH
Stuttgart Zum Job 
Varex Imaging Deutschland AG-Firmenlogo
Elektroniker ( m/w/d) oder Mechatroniker (m/w/d) als Teamleitung im Bereich Messtechnik Varex Imaging Deutschland AG
Eckelmann AG-Firmenlogo
Systemingenieur Echtzeit-Programmierung/-Entwicklung (m/w/d) Eckelmann AG
Wiesbaden Zum Job 
ECKELMANN AG-Firmenlogo
Applikationsingenieur Automatisierungstechnik (m/w/d) Schwerpunkt Walzwerke ECKELMANN AG
Wiesbaden Zum Job 

„Bei der Herstellung implantierbarer bioelektronischer Geräte besteht eine Herausforderung darin, ein Gerät mit gewebeähnlichen mechanischen Eigenschaften herzustellen“, erklärt Yahao Dai, der Erstautor des Papers. „Auf diese Weise können sie sich, wenn sie direkt mit dem Gewebe verbunden werden, gemeinsam verformen und auch eine sehr intime Bio-Schnittstelle bilden.“

Das entwickelte Material weist eine einzigartige Kombination von Eigenschaften auf, die es ideal für bioelektronische Schnittstellen machen. Mit einer Dehnbarkeit von 150 %, einer Ladungsträgerbeweglichkeit von bis zu 1,4 cm²/Vs und einem Modul auf Gewebeebene von nur 81 kPa erfüllt es alle notwendigen Voraussetzungen. Das Material bleibt elastisch und weich, während es gleichzeitig Informationen zwischen Gewebe und Elektronik effizient überträgt.

Innovation durch Lösungsmittel-Austausch

Der Schlüssel zu dieser spannenden Entwicklung liegt in der Herstellungsmethode. Anstatt Halbleiter in Wasser zu lösen, wie es bei Hydrogelen üblich ist, wurde ein Lösungsmittel-Austauschprozess verwendet. Dabei wurden die Halbleiter in einem organischen Lösungsmittel gelöst, das mit Wasser mischbar ist. Dieses Organogel wurde dann in Wasser überführt, sodass das organische Lösungsmittel entfernt und das Material zu einem Hydrogel umgewandelt wurde.

„Wir dachten uns: ‚Okay, ändern wir unsere Perspektive‘, und kamen auf einen Lösungsmittel-Austauschprozess“, erklärt Dai. Diese Methode ist nicht nur effizient, sondern lässt sich auch auf verschiedene Arten von Polymer-Halbleitern anwenden.

Vielseitige Anwendungen

Die potenziellen Einsatzgebiete des Hydrogel-Halbleiters sind laut Forschungsteam vielfältig. Neben implantierbaren Geräten wie Herzschrittmachern und biochemischen Sensoren bietet das Material auch interessante Möglichkeiten für nicht-invasive Anwendungen. So könnten beispielsweise bessere Messgeräte für die Haut entwickelt oder die Wundversorgung verbessert werden.

„Es hat sehr weiche mechanische Eigenschaften und einen hohen Hydrationsgrad, ähnlich wie lebendes Gewebe“, erläutert Assistenzprofessor Wang. „Hydrogel ist außerdem sehr porös, sodass es den effizienten Diffusionstransport verschiedener Arten von Nährstoffen und Chemikalien ermöglicht. All diese Eigenschaften machen Hydrogel wahrscheinlich zum nützlichsten Material für die Gewebezüchtung und die Verabreichung von Medikamenten.“

Mehr als die Summe seiner Teile

Das neue Material stellt keine einfache Kombination von Halbleiter und Hydrogel dar, sondern ein vollkommen neues Material, das beide Eigenschaften in einem vereint. „Es handelt sich um ein einziges Stück, das sowohl Halbleitereigenschaften als auch ein Hydrogel-Design aufweist“, betont Wang. „Es ist eine Art Kombination, bei der eins plus eins größer als zwei ist“, scherzt Wang weiter.

Ein entscheidender Vorteil dieser Materialinnovation liegt in der verbesserten biologischen Funktion. Durch die weiche Verbindung mit dem Gewebe werden Immunreaktionen und Entzündungen, wie sie bei herkömmlichen Implantaten oft auftreten, deutlich reduziert. Zudem verstärken die hohe Porosität des Hydrogels und die Halbleitereigenschaften die Sensitivität von Biosensoren und verbessern lichtgesteuerte therapeutische Funktionen.

Hier geht es zur Originalpublikation

Ein Beitrag von:

  • Dominik Hochwarth

    Redakteur beim VDI Verlag. Nach dem Studium absolvierte er eine Ausbildung zum Online-Redakteur, es folgten ein Volontariat und jeweils 10 Jahre als Webtexter für eine Internetagentur und einen Onlineshop. Seit September 2022 schreibt er für ingenieur.de.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.