Chips DER ZUKUNFT 06.10.2015, 13:29 Uhr

IBM baut Mikrochip mit Kohlenstoffröhrchen anstelle von Silizium

Prozessoren in Computern sollen künftig weitaus schneller arbeiten, weil sie dann aus Millionstel Millimeter kleinen Bauteilen aus Kohlenstoff statt Silizium bestehen. Die Elektronen fließen beinahe ungehindert in den Chips. Das Problem der Kontaktierung haben IBM-Forscher im Ansatz gelöst.

Geschafft: Ein im IBM-Labor hergestellter Wafer mit Nanotubes aus Kohlenstoff.

Geschafft: Ein im IBM-Labor hergestellter Wafer mit Nanotubes aus Kohlenstoff.

Foto: IBM Research

Nanotubes, also Röhrchen, die aus sechseckig angeordneten Kohlenstoffatomen bestehen, könnten in einigen Jahren Silizium als Basismaterial für Transistoren ersetzen. Mikroprozessoren und andere Computerchips bestehen aus Milliarden Transistoren. Mehr ist mit dem Werkstoff Silizium aus physikalischen Gründen nicht drin.

Mit Nanotubes, die nur wenige Millionstel Millimeter groß sind, schon. Es sind auch schon Transistoren aus Kohlenstoff gebaut worden, doch sie haben bisher einen Nachteil: Der winzige Strom, der in ihnen arbeitet, muss den Transistor wieder verlassen, um in einen benachbarten zu fließen. Das war bisher nur mit Einschränkungen möglich, weil die Kontaktflächen einen zu großen elektrischen Widerstand hatten.

Metall und Kohlenstoff verschmelzen

Dieses Problem hat der amerikanische Elektronikkonzern IBM jetzt gelöst, im Ansatz jedenfalls. Die Forscher haben einen metallurgischen Prozess entwickelt, bei dem Kohlenstoff- und die Metallatome der Kontakte auf chemischem Wege miteinander verschmolzen werden. Dieses Verfahren, von den Entwicklern „end-bonded contact scheme“ genannt, erlaubt es, die Kontakte auf zehn Millionstel Millimeter schrumpfen zu lassen, ohne dass sich die Leistung der Kohlenstoff-Transistoren entscheidend verschlechtert.

Durch einen chemischen Prozess werden die Kontakte der Nanotubes aus Kohlenstoff auf eine Größe von unter 10 nm geschrumpft.

Durch einen chemischen Prozess werden die Kontakte der Nanotubes aus Kohlenstoff auf eine Größe von unter 10 nm geschrumpft.

Quelle: IBM Research

Stellenangebote im Bereich Elektrotechnik, Elektronik

Elektrotechnik, Elektronik Jobs
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur/in (m/w/d) für Tunnelsicherheit Die Autobahn GmbH des Bundes
Stuttgart Zum Job 
SE Tylose GmbH & Co. KG-Firmenlogo
Ingenieur der Mess- und Regeltechnik (m/w/d) für Investitionsprojekte SE Tylose GmbH & Co. KG
Wiesbaden Zum Job 
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
HENN GmbH-Firmenlogo
Ingenieur*in | Technische Ausrüstung Elektrotechnik / HLSK HENN GmbH
München Zum Job 
TÜV Hessen-Firmenlogo
Sachverständiger Elektrotechnik (m/w/d) TÜV Hessen
Frankfurt am Main Zum Job 
Bundesamt für Strahlenschutz-Firmenlogo
Ingenieur*in (FH/Bachelor) (m/w/d) Elektrotechnik, Physik, Medizintechnik, Informationstechnik im "Kompetenzzentrum Elektromagnetische Felder" der Abteilung "Wirkungen und Risiken ionisierender und nichtionisierender Strahlung" Bundesamt für Strahlenschutz
Oberschleißheim (bei München) Zum Job 
Stuttgart Netze GmbH-Firmenlogo
(Junior) Ingenieur Elektrotechnik Projektierung (w/m/d) Stuttgart Netze GmbH
Stuttgart Zum Job 
VIVAVIS AG-Firmenlogo
Sales Manager Bahn (m/w/d) VIVAVIS AG
Berlin, Home-Office Zum Job 
Alhäuser + König Ingenieurbüro GmbH-Firmenlogo
Ingenieur:in für Elektrotechnik / Master / Bachelor /Diplom (m/w/d) Alhäuser + König Ingenieurbüro GmbH
Bonn, Hachenburg Zum Job 
Stadtwerke Rüsselsheim GmbH-Firmenlogo
Messtechniker als Spezialist Gerätemanagement Strom (m/w/d Stadtwerke Rüsselsheim GmbH
Rüsselsheim Zum Job 
Agile Robots SE-Firmenlogo
Senior Projektingenieur - Industrial Automation (m/w/d) Agile Robots SE
München Zum Job 
Hochschule für angewandte Wissenschaften Kempten-Firmenlogo
Professur (w/m/d) Elektrische Antriebstechnik Hochschule für angewandte Wissenschaften Kempten
Kempten Zum Job 
PFISTERER Kontaktsysteme GmbH-Firmenlogo
High Voltage Testing Specialist (w/m/d) PFISTERER Kontaktsysteme GmbH
Winterbach Zum Job 
Sanofi-Aventis Deutschland GmbH-Firmenlogo
Ingenieur-Trainee in der Pharmazeutischen Produktion - all genders Sanofi-Aventis Deutschland GmbH
Frankfurt am Main Zum Job 
Technische Hochschule Deggendorf-Firmenlogo
Forschungsprofessur oder Nachwuchsprofessur (m/w/d) Industrielle Robotik Technische Hochschule Deggendorf
Bundesamt für Wirtschaft und Ausfuhrkontrolle-Firmenlogo
Elektro- bzw. Informationstechnikerinnen und -techniker (w/m/d) (FH-Diplom/Bachelor) für den Bereich Exportkontrolle Bundesamt für Wirtschaft und Ausfuhrkontrolle
Eschborn Zum Job 
THU Technische Hochschule Ulm-Firmenlogo
W2-Professur "Elektrische Antriebe" THU Technische Hochschule Ulm
Mercer Stendal GmbH-Firmenlogo
Ingenieur / Techniker (m/w/d) Automatisierungstechnik Mercer Stendal GmbH
Arneburg Zum Job 
Mercer Stendal GmbH-Firmenlogo
Betriebstechniker (m/w/d) Prozessleittechnik Mercer Stendal GmbH
Arneburg Zum Job 
Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV)-Firmenlogo
Ingenieurin / Ingenieur (m/w/d) (FH-Diplom/Bachelor) in der Fachrichtung Elektrotechnik Schwerpunkt Nachrichtentechnik/Informationstechnik oder vergleichbar Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV)
Koblenz Zum Job 

Um höhere Computerleistung zu erhalten, müssen die Prozessoren, die Herzen der Rechner, auf gleicher Fläche immer mehr Transistoren aufnehmen. Bei Silizium ist das Ende der Fahnenstange weitgehend erreicht. Die viel kleineren Nanotube-Transistoren nehmen weit weniger Platz ein. Außerdem flitzen die Elektronen, die letztlich die Rechenarbeit leisten, viel schneller durch die neuartigen Transistoren als durch Siliziumstrukturen.

Flaschenhals in der Transistor-Technologie

„Bei jeder fortgeschrittenen Transistor-Technologie gibt es einen Flaschenhals“, sagt Dario Gil, Vice President of Science & Technology in der IBM-Forschungsabteilung. „Mit der Verkleinerung der Transistoren erhöht sich der Widerstand der Kontakte.“ Mit dem neuen Kontaktierungsverfahren glauben die Forscher auf dem richtigen Weg zu sein, die Zwickmühle aufzulösen. „Das bringt uns einen Schritt weiter auf dem Weg zu einer Nanotube-Technologie innerhalb eines Jahrzehnts“, so Gil.

Schematische Darstellung der Mikroprozessoren Nanotubes aus Kohlenstoff: Die Länge der Kontakte unterschreitet 10 nm.

Schematische Darstellung der Mikroprozessoren Nanotubes aus Kohlenstoff: Die Länge der Kontakte unterschreitet 10 nm.

Quelle: IBM Research

Nanotubes sind noch zu teuer

Mit vielfach schnelleren Transistoren innerhalb von Prozessoren lässt sich die Rechengeschwindigkeit von Großcomputern, wie sie beispielsweise von Suchmaschinen und Cloudanbietern eingesetzt werden, massiv erhöhen. Nanotubes sind auch Hoffnungsträger für leistungsfähigere Batterien, wie IBM betont. Bisher gibt es jedoch noch kein Herstellungsverfahren, mit dem sich Billionen Nanotubes preiswert herstellen lassen.

Ein Beitrag von:

  • Wolfgang Kempkens

    Wolfgang Kempkens studierte an der RWTH Aachen Elektrotechnik und schloss mit dem Diplom ab. Er arbeitete bei einer Tageszeitung und einem Magazin, ehe er sich als freier Journalist etablierte. Er beschäftigt sich vor allem mit Umwelt-, Energie- und Technikthemen.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.