Caltech-Forschung 17.11.2023, 12:47 Uhr

Könnte vieles ändern: Ultraschneller Laser passt auf Fingerkuppe

In vielen Bereichen der Wissenschaft, insbesondere auch für die Erkundung des Weltalls, braucht es leistungsfähige und hochpräzise Laser. Allerdings sind die meisten Laser, die diese Aufgabe erfüllen können, sperrig, teuer und verbrauchen viel Strom. Das könnte sich jetzt ändern.

Miniaturlaser

Ultraschneller modengekoppelter Laser in nanophotonischem Lithiumniobat.

Foto: Caltech/Alireza Marandi

Laser haben sich weit über ihre alltäglichen Anwendungen, wie Lichtshows und das Scannen von Strichcodes, hinausentwickelt. Sie spielen eine wesentliche Rolle in Bereichen wie der Telekommunikation, Informatik sowie in der biologischen, chemischen und physikalischen Forschung. Insbesondere Laser, die extrem kurze Pulse von einer Billionstel Sekunde (einer Pikosekunde) oder kürzer erzeugen können, sind in diesen spezialisierten Anwendungsbereichen von großer Bedeutung. Genau hier setzt eine Forschung des California Institute of Technology (Caltech) an.

Caltech entwickelt Laser mit ultrakurzen Pulsen

Wissenschaftlerinnen und Wissenschaftler des Caltech haben einen ihrer Meinung nach revolutionären Laser entwickelt, der ultrakurze Pulse erzeugt. Diese sind so klein sind, dass sie auf eine Fingerspitze passen. Diese fortschrittlichen Laser eignen sich für vielfältige Anwendungen, von medizinischer Bildgebung über präzise Atomuhren bis hin zur satellitenunabhängigen Navigation.

In Bereichen, in denen extrem schnelle Laserpulse gefragt sind, bieten diese kompakten Geräte entscheidende Vorteile. Ihre geringe Größe ist mehr als nur eine technische Spielerei: Durch die Miniaturisierung der Technologie eröffnen sich zahlreiche neue Anwendungsmöglichkeiten. Dadurch, dass der Laser auf einen kleinen Chip passt, lässt sich die Technologie leicht in andere, taschengroße Geräte integrieren.

„Wollen ultraschnelle Photonik revolutionieren“

„Unser Ziel ist es, den Bereich der ultraschnellen Photonik zu revolutionieren, indem wir große laborbasierte Systeme in chipgroße Systeme umwandeln, die in Massenproduktion hergestellt und vor Ort eingesetzt werden können“, sagt der Physiker Qiushi Guo vom Caltech und der City University of New York. „Wir wollen nicht nur alles kleiner machen, sondern auch sicherstellen, dass diese ultraschnellen Laser in Chipgröße eine zufriedenstellende Leistung erbringen“.

Stellenangebote im Bereich Elektrotechnik, Elektronik

Elektrotechnik, Elektronik Jobs
SWR Südwestrundfunk Anstalt des öffentlichen Rechts-Firmenlogo
Ingenieur / Ingenieurin (w/m/d) im Bereich Elektrotechnik/Sicherheit und Netze SWR Südwestrundfunk Anstalt des öffentlichen Rechts
Stuttgart Zum Job 
Sauer Compressors-Firmenlogo
LSA-Engineer (m/w/d) Sauer Compressors
Birkenstock Productions Hessen GmbH-Firmenlogo
Verantwortliche Elektrofachkraft (m/w/d) Birkenstock Productions Hessen GmbH
Steinau-Uerzell Zum Job 
TenneT TSO GmbH-Firmenlogo
Elektroingenieur für die Planung und Sicherstellung der europäischen Stromversorgung (m/w/d) TenneT TSO GmbH
Netzgesellschaft Potsdam GmbH-Firmenlogo
Ingenieur (m/w/d) Strategische Netzplanung Strom Netzgesellschaft Potsdam GmbH
Potsdam Zum Job 
Narda Safety Test Solutions GmbH'-Firmenlogo
Einkäufer für den Bereich Elektrotechnik (m/w/d) mit der Möglichkeit zur Teamleitung Narda Safety Test Solutions GmbH'
Pfullingen Zum Job 
Evonik Operations GmbH-Firmenlogo
EMR-Anlageningenieur (m/w/d) Evonik Operations GmbH
Rheinfelden (Baden) Zum Job 
Staatliche Gewerbeaufsicht Niedersachsen-Firmenlogo
Ingenieur / Naturwissenschaftler (m/w/d) für den Einsatz im Arbeitsschutz / Umweltschutz / Verbraucherschutz (Bachelor of Science / Bachelor of Engineering / Diplom / FH) Staatliche Gewerbeaufsicht Niedersachsen
Braunschweig Zum Job 
Staatliche Gewerbeaufsicht Niedersachsen-Firmenlogo
Ingenieur / Naturwissenschaftler (m/w/d) für den Einsatz im Arbeitsschutz / Umweltschutz / Verbraucherschutz (Master, Diplom Uni) Staatliche Gewerbeaufsicht Niedersachsen
verschiedene Standorte Zum Job 
Thyssengas GmbH-Firmenlogo
Ingenieur Projektleiter Leitungsbau (m/w/d) Thyssengas GmbH
Dortmund Zum Job 
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
EMSCHERGENOSSENSCHAFT und LIPPEVERBAND-Firmenlogo
Gruppenleiter*in Elektrotechnik (m/w/d) EMSCHERGENOSSENSCHAFT und LIPPEVERBAND
Hamburger Hochbahn AG-Firmenlogo
Senior - Projektleiter Elektrotechnik Betriebsanlagen (w/m/d) Hamburger Hochbahn AG
Hamburg Zum Job 
3M Deutschland GmbH-Firmenlogo
Senior Capital Project Manager (m/f/d) 3M Deutschland GmbH
Possehl Electronics Deutschland GmbH-Firmenlogo
Teamleiter QVP (w/m/d) Possehl Electronics Deutschland GmbH
Niefern-Öschelbronn Zum Job 
IMS Röntgensysteme GmbH-Firmenlogo
Entwicklungsingenieur (m/w/i) für digitale Inspektionssysteme IMS Röntgensysteme GmbH
Heiligenhaus Zum Job 
TGM Kanis Turbinen GmbH-Firmenlogo
Vertriebsingenieur (m/w/d) Bereich Service TGM Kanis Turbinen GmbH
Nürnberg Zum Job 
Griesemann Gruppe-Firmenlogo
Lead Ingenieur Prozessleittechnik (m/w/d) Griesemann Gruppe
Leipzig Zum Job 
Griesemann Gruppe-Firmenlogo
Lead Ingenieur Elektrotechnik (m/w/d) Griesemann Gruppe
Leuna, Leipzig Zum Job 
Deutsche Rentenversicherung Bund-Firmenlogo
Projektingenieur*in/ Teilprojektverantwortliche*r Elektrotechnik (m/w/div) Deutsche Rentenversicherung Bund
SWR Südwestrundfunk Anstalt des öffentlichen Rechts-Firmenlogo
Ingenieur / Ingenieurin (w/m/d) im Bereich Elektrotechnik/Sicherheit und Netze SWR Südwestrundfunk Anstalt des öffentlichen Rechts
Stuttgart Zum Job 
Sauer Compressors-Firmenlogo
LSA-Engineer (m/w/d) Sauer Compressors
Birkenstock Productions Hessen GmbH-Firmenlogo
Verantwortliche Elektrofachkraft (m/w/d) Birkenstock Productions Hessen GmbH
Steinau-Uerzell Zum Job 
TenneT TSO GmbH-Firmenlogo
Elektroingenieur für die Planung und Sicherstellung der europäischen Stromversorgung (m/w/d) TenneT TSO GmbH

Die als Mode-Lock-Laser (MLL) bezeichneten Geräte erzeugen extrem kurze Laserpulse. Dies wird durch das „Verriegeln“verschiedener Laserfrequenzen und -phasen erreicht, wodurch Pulsdauern im Bereich von Femtosekunden, also Billiardstelsekunden, ermöglicht werden.

Dünnfilm-Lithiumniobat macht den Weg frei

Die Entwicklung schnellerer Laserpulse ermöglicht es, kleinere Objekte und solche, die sich rasch bewegen – beispielsweise Atome in einem Molekül – genauer zu beobachten. Aktuell sind die fortschrittlichsten und leistungsfähigsten Modenkopplungs-Laser (MLLs) jedoch nur in tischgroßer Ausführung verfügbar und verbrauchen viel Energie.

Um einen MLL auf einem winzigen Chip zu integrieren, nutzte das Forschungsteam dünne Schichten aus Lithiumniobat (TFLN). Dieses Material erlaubt die präzise Kontrolle von Laserpulsen durch externe elektrische Hochfrequenzsignale. Zusätzlich kombinierten sie TFLN mit einem speziellen, laserfreundlichen Halbleiter, um den besonders kleinen Laser zu realisieren.

Ultraschnelle Laser wurden 2023 mit Nobelpreis ausgezeichnet

Der diesjährige Nobelpreis für Physik zeichnete ein Trio von Wissenschaftlern für die Entwicklung von Lasern aus, die extrem kurze Attosekunden-Pulse (ein Quintillionstel einer Sekunde) erzeugen können, ein Durchbruch von großer Bedeutung in der Forschung. Aktuell sind solche Laser allerdings sehr teuer und sperrig.

Alireza Marandi, Assistenzprofessor für Elektrotechnik und angewandte Physik am Caltech betont, seine Forschung konzentriere sich darauf, ähnlich kurze Zeitskalen auf Chips zu realisieren, die wesentlich günstiger und kompakter sein könnten. Ziel sei es, bezahlbare und praktikable ultraschnelle photonische Technologien zu entwickeln.

„Diese Attosekunden-Experimente werden fast ausschließlich mit ultraschnellen modengekoppelten Lasern durchgeführt“, sagt Marandi. „Einige dieser Experimente können bis zu 10 Millionen Dollar kosten, wobei ein großer Teil dieser Kosten auf den modengekoppelten Laser entfällt. Wir sind wirklich gespannt darauf, wie wir diese Experimente und Funktionen in der Nanophotonik wiederholen können.“

Vielfältige Einsatzgebiete für den Miniatur-Laser

Zurück zum von der Caltech entwickelten Miniatur-Laser: Er ist in der Lage, einen 4,3 Pikosekunden (das sind Billionstel Sekunden) langen Puls im nahen Infrarotbereich mit einer Spitzenleistung von etwa einem halben Watt zu erzeugen. Darüber hinaus ist der fertige Laser äußerst vielseitig in Bezug auf seine Abstimmbarkeit und seinen Betrieb, so dass er in tragbare, handgehaltene Geräte eingebaut werden kann.  Im nächsten Schritt geht es nun darum, genau dies möglich zu machen.

Das Forschungsteam, das hinter dem Miniaturisierungsverfahren steht, ist allerdings zuversichtlich: „Diese Errungenschaft ebnet den Weg für den Einsatz von Mobiltelefonen zur Diagnose von Augenkrankheiten oder zur Analyse von Lebensmitteln und Umgebungen auf Dinge wie E. coli und gefährliche Viren“, sagt Guo. „Sie könnte auch futuristische Atomuhren im Chipmaßstab ermöglichen, die eine Navigation erlauben, wenn das GPS beeinträchtigt oder nicht verfügbar ist.“

Die Forschungsergebnisse wurden in Science veröffentlicht.

Ein Beitrag von:

  • Dominik Hochwarth

    Redakteur beim VDI Verlag. Nach dem Studium absolvierte er eine Ausbildung zum Online-Redakteur, es folgten ein Volontariat und jeweils 10 Jahre als Webtexter für eine Internetagentur und einen Onlineshop. Seit September 2022 schreibt er für ingenieur.de.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.