Optischer Verstärker 26.06.2015, 06:54 Uhr

Mikroskop aus München macht Details der Nanopartikel sichtbar

Mit einem Hochleistungsmikroskop machen Münchner Forscher Details millionstel Millimeter kleiner Nanopartikel sichtbar. Bislang lassen sie sich nur über Umwege beobachten. Herzstück des Mikroskops ist ein optischer Verstärker. 

Neues Mikroskop des Max-Planck-Instituts für Quantenoptik: Forscher beobachten damit millionstel Millimeter kleine Nanoteilchen. 

Neues Mikroskop des Max-Planck-Instituts für Quantenoptik: Forscher beobachten damit millionstel Millimeter kleine Nanoteilchen. 

Foto: Max-Planck-Institut für Quantenoptik

Nanoteilchen verhelfen Oberflächen zu besseren Eigenschaften oder schützen in Sonnencremes vor ultravioletten Strahlen. Die millionstel Millimeter kleinen Teilchen haben verschiedene Formen: Sie sind kugelförmig, flach oder ausgefranst. Unter dem Mikroskop lassen sie sich Details der Teilchen bislang allerdings nicht beobachten. Dafür sind sie schlicht zu klein.

Forscher verwenden deshalb indirekte Methoden. Klumpen tausender Nanoteilchen werden mit Licht unterschiedlicher Frequenz bestrahlt. Je nach Form der Teilchen wird es gestreut. Daraus lässt sich in etwa auf Form und Zusammensetzung der Mehrheit der Nanopartikel schließen.

50.000-fache Verstärkung

Jetzt lassen sich auch Details einzelner Teilchen betrachten. Forscher am Max-Planck-Institut für Quantenoptik (MPQ) in München und der dortigen Ludwig-Maximilians-Universität (LMU) haben einen optischen Verstärker entwickelt, der die Wechselwirkung eines einzelnen Nanoteilchens mit Licht verbessert. „Unser Ansatz besteht darin, dass wir das Licht, das der Abbildung dient, in einem Resonator zigtausendmal umlaufen lassen. Dadurch erhöht sich die Wechselwirkung zwischen Teilchen und Lichtfeld, und das Signal ist leicht zu messen“, erklärt David Hunger aus dem Team von Theodor Hänsch, Direktor am MPQ und Professor für Experimentalphysik an der LMU. „Bei einem normalen Mikroskop betrüge das Signal weniger als ein Millionstel der Eingangsleistung und wäre nicht ohne weiteres messbar. Durch den Resonator wird das Signal nun circa 50.000-fach verstärkt.“

Es geht um milliardstel Millimeter

Das Mikroskop besteht aus einem Spiegel, auf dem das Teilchen liegt, das beobachtet werden soll. Darüber schwebt eine Glasfaser, deren Ende eine konkave Linse ist. Diese dient gleichzeitig als Reflektor und als Beleuchter. Bei einem bestimmten Abstand zwischen Spiegel und Linse kommt es zu einer Resonanz: Der Lichtstrahl flitzt hin und her, wobei sich die Wechselwirkung mit dem Teilchen ständig vergrößert. Bei der Einstellung des Abstands geht es um wenige Pikometer, also um milliardstel Millimeter.

Stellenangebote im Bereich Elektrotechnik, Elektronik

Elektrotechnik, Elektronik Jobs
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur/in (m/w/d) für Tunnelsicherheit Die Autobahn GmbH des Bundes
Stuttgart Zum Job 
SE Tylose GmbH & Co. KG-Firmenlogo
Ingenieur der Mess- und Regeltechnik (m/w/d) für Investitionsprojekte SE Tylose GmbH & Co. KG
Wiesbaden Zum Job 
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
HENN GmbH-Firmenlogo
Ingenieur*in | Technische Ausrüstung Elektrotechnik / HLSK HENN GmbH
München Zum Job 
TÜV Hessen-Firmenlogo
Sachverständiger Elektrotechnik (m/w/d) TÜV Hessen
Frankfurt am Main Zum Job 
Bundesamt für Strahlenschutz-Firmenlogo
Ingenieur*in (FH/Bachelor) (m/w/d) Elektrotechnik, Physik, Medizintechnik, Informationstechnik im "Kompetenzzentrum Elektromagnetische Felder" der Abteilung "Wirkungen und Risiken ionisierender und nichtionisierender Strahlung" Bundesamt für Strahlenschutz
Oberschleißheim (bei München) Zum Job 
Stuttgart Netze GmbH-Firmenlogo
(Junior) Ingenieur Elektrotechnik Projektierung (w/m/d) Stuttgart Netze GmbH
Stuttgart Zum Job 
VIVAVIS AG-Firmenlogo
Sales Manager Bahn (m/w/d) VIVAVIS AG
Berlin, Home-Office Zum Job 
Alhäuser + König Ingenieurbüro GmbH-Firmenlogo
Ingenieur:in für Elektrotechnik / Master / Bachelor /Diplom (m/w/d) Alhäuser + König Ingenieurbüro GmbH
Bonn, Hachenburg Zum Job 
Stadtwerke Rüsselsheim GmbH-Firmenlogo
Messtechniker als Spezialist Gerätemanagement Strom (m/w/d Stadtwerke Rüsselsheim GmbH
Rüsselsheim Zum Job 
Agile Robots SE-Firmenlogo
Senior Projektingenieur - Industrial Automation (m/w/d) Agile Robots SE
München Zum Job 
Hochschule für angewandte Wissenschaften Kempten-Firmenlogo
Professur (w/m/d) Elektrische Antriebstechnik Hochschule für angewandte Wissenschaften Kempten
Kempten Zum Job 
PFISTERER Kontaktsysteme GmbH-Firmenlogo
High Voltage Testing Specialist (w/m/d) PFISTERER Kontaktsysteme GmbH
Winterbach Zum Job 
Sanofi-Aventis Deutschland GmbH-Firmenlogo
Ingenieur-Trainee in der Pharmazeutischen Produktion - all genders Sanofi-Aventis Deutschland GmbH
Frankfurt am Main Zum Job 
Technische Hochschule Deggendorf-Firmenlogo
Forschungsprofessur oder Nachwuchsprofessur (m/w/d) Industrielle Robotik Technische Hochschule Deggendorf
Bundesamt für Wirtschaft und Ausfuhrkontrolle-Firmenlogo
Elektro- bzw. Informationstechnikerinnen und -techniker (w/m/d) (FH-Diplom/Bachelor) für den Bereich Exportkontrolle Bundesamt für Wirtschaft und Ausfuhrkontrolle
Eschborn Zum Job 
THU Technische Hochschule Ulm-Firmenlogo
W2-Professur "Elektrische Antriebe" THU Technische Hochschule Ulm
Mercer Stendal GmbH-Firmenlogo
Ingenieur / Techniker (m/w/d) Automatisierungstechnik Mercer Stendal GmbH
Arneburg Zum Job 
Mercer Stendal GmbH-Firmenlogo
Betriebstechniker (m/w/d) Prozessleittechnik Mercer Stendal GmbH
Arneburg Zum Job 
Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV)-Firmenlogo
Ingenieurin / Ingenieur (m/w/d) (FH-Diplom/Bachelor) in der Fachrichtung Elektrotechnik Schwerpunkt Nachrichtentechnik/Informationstechnik oder vergleichbar Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV)
Koblenz Zum Job 

Die Forscher bildeten als Erstes ein Teilchen aus Gold ab, das einen Durchmesser von 40 Nm hatte – ein Nanometer ist ein millionstel Millimeter. Daran lernten sie, die Wechselwirkung zwischen Teilchen und Licht zu verstehen und zu interpretieren. Mit diesem Know-how können sie jetzt beliebig geformte andere Teilchen sichtbar machen.

Ein Beitrag von:

  • Wolfgang Kempkens

    Wolfgang Kempkens studierte an der RWTH Aachen Elektrotechnik und schloss mit dem Diplom ab. Er arbeitete bei einer Tageszeitung und einem Magazin, ehe er sich als freier Journalist etablierte. Er beschäftigt sich vor allem mit Umwelt-, Energie- und Technikthemen.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.