Zukunft der Mikrochips 09.12.2024, 14:33 Uhr

Neuer Halbleiterlaser löst zentrales Problem der Silizium-Photonik

Erster elektrisch gepumpter Laser für Siliziumchips entwickelt: Neue Lichtquelle aus Silizium-Germanium-Zinn optimiert die On-Chip-Photonik.

Ein internationales Forschungsteam entwickelt den ersten elektrisch gepumpten, kontinuierlichen Laser für die nahtlose Integration in Siliziumchips. Foto: Forschungszentrum Jülich / Jhonny Tiscareno

Ein internationales Forschungsteam entwickelt den ersten elektrisch gepumpten, kontinuierlichen Laser für die nahtlose Integration in Siliziumchips.

Foto: Forschungszentrum Jülich / Jhonny Tiscareno

Ein internationales Team unter Leitung des Forschungszentrums Jülich hat das letzte Puzzlestück der Silizium-Photonik gefunden. Erstmals ist es gelungen, einen elektrisch gepumpten Halbleiterlaser zu entwickeln, der im Dauerbetrieb arbeitet und ausschließlich auf Elementen der vierten Hauptgruppe basiert. Dieser neue Laser, der aus ultradünnen Schichten von Silizium-Germanium-Zinn und Germanium-Zinn besteht, kann direkt in Siliziumchips integriert werden. Damit ist eine entscheidende Hürde für die nahtlose Verbindung von optischen und elektronischen Komponenten genommen.

Was verbirgt sich hinter Silizium-Photonik?

Schauen wir uns zunächst an, was sich hinter Silizium-Photonik verbirgt: Mit mikroelektronischen Verfahren können einzelne Bauelemente sowie vollständige photonische Systeme direkt auf Siliziumwafer gedruckt werden.

Dazu zählen Lichtwellenleiter, Linsen, Splitter, optische Verstärker, Phasenmodulatoren, Polarisationswandler und mehr. Dies ermöglicht die Integration von Lasersystemen, Sensorsystemen oder integrierten photonischen Schaltungen (PICs – Photonic Integrated Circuits) auf einem Chip.

Stellenangebote im Bereich Elektrotechnik, Elektronik

Elektrotechnik, Elektronik Jobs
Octapharma Produktionsgesellschaft Deutschland mbH-Firmenlogo
Ingenieur (m/w/d) Automatisierung (Schwerpunkt: Prozessleitsystem PCS7) Octapharma Produktionsgesellschaft Deutschland mbH
Springe Zum Job 
BG ETEM-Firmenlogo
Aufsichtsperson I (m/w/d) nach § 18 SGB VII für die Region Rheine, Nordhorn und Lingen BG ETEM
Region Lingen, Rheine, Nordhorn Zum Job 
Nitto Advanced Film Gronau GmbH-Firmenlogo
Projektingenieur im Engineering (w/m/d) Nitto Advanced Film Gronau GmbH
Industriepark Nienburg GmbH-Firmenlogo
Ingenieur (m/w/d) Elektrotechnik als Leiter Elektrotechnik & Automation Industriepark Nienburg GmbH
Nienburg Zum Job 
Evonik Operations GmbH-Firmenlogo
EMR-Anlageningenieur (m/w/d) mit Sonderqualifikation Evonik Operations GmbH
Rheinfelden (Baden) Zum Job 
CR3-Kaffeeveredelung M. Hermsen GmbH-Firmenlogo
Projektleiter (m/w/d) Elektrotechnik CR3-Kaffeeveredelung M. Hermsen GmbH
THU Technische Hochschule Ulm-Firmenlogo
Laboringenieur*in (w/m/d) mit Leitungsfunktion am Institut für Automatisierungssysteme THU Technische Hochschule Ulm
Infraserv GmbH & Co. Höchst KG-Firmenlogo
Ingenieur Verfahrenstechnik / Mechatronik für Messstellenbetrieb Erdgas & rohrgebundene Medien (w/m/d) Infraserv GmbH & Co. Höchst KG
Frankfurt am Main Zum Job 
Zweckverband Bodensee-Wasserversorgung-Firmenlogo
Ingenieur (m/w/d) für Automatisierungstechnik SPS / OT-Sicherheit Zweckverband Bodensee-Wasserversorgung
Sipplingen Zum Job 
B. Braun Melsungen AG-Firmenlogo
Senior Prozess Experte (w/m/d) Reinmedien / Einwaage / Ansatz B. Braun Melsungen AG
Melsungen Zum Job 
Deutsches Zentrum für Luft- und Raumfahrt e. V.-Firmenlogo
Versorgungsingenieur/in, Elektroingenieur/in o. ä. (w/m/d) Projektsteuerung von Baumaßnahmen Deutsches Zentrum für Luft- und Raumfahrt e. V.
AGR Betriebsführung GmbH-Firmenlogo
Ingenieur Leittechnik (m/w/d) AGR Betriebsführung GmbH
Fresenius Kabi Deutschland GmbH-Firmenlogo
Automatisierungstechniker (m/w/d) Fresenius Kabi Deutschland GmbH
Friedberg (Hessen) Zum Job 
Siltronic AG-Firmenlogo
Ingenieur (m/w/d) Elektro- / Energietechnik Siltronic AG
Burghausen Zum Job 
Mack NC Engineering GmbH-Firmenlogo
Elektrokonstrukteur/SPS-Programmierer Automatisierungstechnik (m/w/d) Mack NC Engineering GmbH
Füssen Zum Job 
IMS Messsysteme GmbH-Firmenlogo
Systemingenieur (m/w/i) für Oberflächeninspektion IMS Messsysteme GmbH
Heiligenhaus Zum Job 
Menlo Systems GmbH-Firmenlogo
Ingenieur / Physiker (m/w/d) für Service und Support Menlo Systems GmbH
Planegg Zum Job 
Elektroenergieversorgung Cottbus GmbH-Firmenlogo
Ingenieur für Energienetzbetrieb (m/w/d) Elektroenergieversorgung Cottbus GmbH
Cottbus Zum Job 
B. Braun Melsungen AG-Firmenlogo
Projektingenieur (w/m/d) Global Quality Systems B. Braun Melsungen AG
Melsungen Zum Job 
B. Braun Melsungen AG-Firmenlogo
R&D Manager (w/m/d) Process Design B. Braun Melsungen AG
Melsungen Zum Job 

Wachsender Energiebedarf als entscheidender Treiber

Ein wesentlicher Treiber der Silizium-Photonik ist der stark wachsende Energiebedarf sowie die damit verbundene Hitzeentwicklung in Rechenzentren. Während elektronische Kabel, Schaltungen und Chips für die Datenübertragung große Mengen Energie verbrauchen, die überwiegend als Abwärme verloren geht, bietet die optische Datenübertragung eine wesentlich energieeffizientere Alternative.

Lichtwellenleiter erzeugen selbst bei höchsten Datenraten kaum thermische Verluste. Besonders über kurze Distanzen, wie innerhalb eines Chips, wird diese Technologie immer attraktiver. Die Integration photonischer Komponenten direkt in Mikroprozessoren könnte daher zukünftig revolutionäre Fortschritte bringen.

Der fehlende Baustein

Obwohl die Silizium-Photonik in den letzten Jahren erhebliche Fortschritte gemacht hat, fehlte bisher ein entscheidendes Element: Eine elektrisch gepumpte Lichtquelle aus Materialien der vierten Hauptgruppe.

Die bislang genutzten III-V-Halbleiter sind schwer mit Silizium zu kombinieren. Dies macht die Produktion teuer und komplex. Der neue Laser schließt diese Lücke. Da er mit der CMOS-Technologie kompatibel ist, kann er direkt in bestehende Herstellungsprozesse integriert werden.

Die neue Technologie im Detail

Der neu entwickelte Laser basiert auf einer Multi-Quantum-Well-Struktur aus ultradünnen Schichten von Silizium-Germanium-Zinn und Germanium-Zinn. Diese Struktur wurde speziell an die Materialeigenschaften angepasst. Eine neuartige Ring-Geometrie minimiert dabei Energieverbrauch und Wärmeentwicklung. Der Laser erreicht einen stabilen Dauerbetrieb bei 90 Kelvin.

Frühere Modelle von Germanium-Zinn-Lasern waren optisch gepumpt und benötigten externe Lichtquellen sowie hohe Energiemengen. Der neue Laser hingegen arbeitet elektrisch und erfordert lediglich 5 Milliampere Strom und 2 Volt Spannung – vergleichbar mit einer Standard-Leuchtdiode. Elektrisch gepumpte Laser sind in der Regel energieeffizienter, da sie Strom direkt in Laserlicht umwandeln.

Potenzial und Herausforderungen

Trotz des großen Fortschritts bleibt laut Forschungsteam Optimierungsbedarf. Die Laserschwelle soll weiter gesenkt und ein stabiler Betrieb bei Raumtemperatur erreicht werden. Aktuelle Forschungsergebnisse zeigen jedoch, dass solche Anpassungen möglich sind. Germanium-Zinn-Laser, die ursprünglich nur bei kryogenen Temperaturen funktionierten, wurden inzwischen für den Raumtemperaturbetrieb optimiert.

Das Forschungsprojekt wurde von Dr. Dan Buca und seinem Team am Forschungszentrum Jülich geleitet. Gemeinsam mit Partnern wie dem IHP, der Universität Stuttgart und weiteren internationalen Einrichtungen haben die Forschenden die Grundlage für die Entwicklung des neuen Lasers geschaffen.

Hier geht es zur Originalpublikation

Ein Beitrag von:

  • Dominik Hochwarth

    Redakteur beim VDI Verlag. Nach dem Studium absolvierte er eine Ausbildung zum Online-Redakteur, es folgten ein Volontariat und jeweils 10 Jahre als Webtexter für eine Internetagentur und einen Onlineshop. Seit September 2022 schreibt er für ingenieur.de.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.