Neuer Halbleiterlaser löst zentrales Problem der Silizium-Photonik
Erster elektrisch gepumpter Laser für Siliziumchips entwickelt: Neue Lichtquelle aus Silizium-Germanium-Zinn optimiert die On-Chip-Photonik.
Ein internationales Team unter Leitung des Forschungszentrums Jülich hat das letzte Puzzlestück der Silizium-Photonik gefunden. Erstmals ist es gelungen, einen elektrisch gepumpten Halbleiterlaser zu entwickeln, der im Dauerbetrieb arbeitet und ausschließlich auf Elementen der vierten Hauptgruppe basiert. Dieser neue Laser, der aus ultradünnen Schichten von Silizium-Germanium-Zinn und Germanium-Zinn besteht, kann direkt in Siliziumchips integriert werden. Damit ist eine entscheidende Hürde für die nahtlose Verbindung von optischen und elektronischen Komponenten genommen.
Inhaltsverzeichnis
Was verbirgt sich hinter Silizium-Photonik?
Schauen wir uns zunächst an, was sich hinter Silizium-Photonik verbirgt: Mit mikroelektronischen Verfahren können einzelne Bauelemente sowie vollständige photonische Systeme direkt auf Siliziumwafer gedruckt werden.
Dazu zählen Lichtwellenleiter, Linsen, Splitter, optische Verstärker, Phasenmodulatoren, Polarisationswandler und mehr. Dies ermöglicht die Integration von Lasersystemen, Sensorsystemen oder integrierten photonischen Schaltungen (PICs – Photonic Integrated Circuits) auf einem Chip.
Wachsender Energiebedarf als entscheidender Treiber
Ein wesentlicher Treiber der Silizium-Photonik ist der stark wachsende Energiebedarf sowie die damit verbundene Hitzeentwicklung in Rechenzentren. Während elektronische Kabel, Schaltungen und Chips für die Datenübertragung große Mengen Energie verbrauchen, die überwiegend als Abwärme verloren geht, bietet die optische Datenübertragung eine wesentlich energieeffizientere Alternative.
Lichtwellenleiter erzeugen selbst bei höchsten Datenraten kaum thermische Verluste. Besonders über kurze Distanzen, wie innerhalb eines Chips, wird diese Technologie immer attraktiver. Die Integration photonischer Komponenten direkt in Mikroprozessoren könnte daher zukünftig revolutionäre Fortschritte bringen.
Der fehlende Baustein
Obwohl die Silizium-Photonik in den letzten Jahren erhebliche Fortschritte gemacht hat, fehlte bisher ein entscheidendes Element: Eine elektrisch gepumpte Lichtquelle aus Materialien der vierten Hauptgruppe.
Die bislang genutzten III-V-Halbleiter sind schwer mit Silizium zu kombinieren. Dies macht die Produktion teuer und komplex. Der neue Laser schließt diese Lücke. Da er mit der CMOS-Technologie kompatibel ist, kann er direkt in bestehende Herstellungsprozesse integriert werden.
Die neue Technologie im Detail
Der neu entwickelte Laser basiert auf einer Multi-Quantum-Well-Struktur aus ultradünnen Schichten von Silizium-Germanium-Zinn und Germanium-Zinn. Diese Struktur wurde speziell an die Materialeigenschaften angepasst. Eine neuartige Ring-Geometrie minimiert dabei Energieverbrauch und Wärmeentwicklung. Der Laser erreicht einen stabilen Dauerbetrieb bei 90 Kelvin.
Frühere Modelle von Germanium-Zinn-Lasern waren optisch gepumpt und benötigten externe Lichtquellen sowie hohe Energiemengen. Der neue Laser hingegen arbeitet elektrisch und erfordert lediglich 5 Milliampere Strom und 2 Volt Spannung – vergleichbar mit einer Standard-Leuchtdiode. Elektrisch gepumpte Laser sind in der Regel energieeffizienter, da sie Strom direkt in Laserlicht umwandeln.
Potenzial und Herausforderungen
Trotz des großen Fortschritts bleibt laut Forschungsteam Optimierungsbedarf. Die Laserschwelle soll weiter gesenkt und ein stabiler Betrieb bei Raumtemperatur erreicht werden. Aktuelle Forschungsergebnisse zeigen jedoch, dass solche Anpassungen möglich sind. Germanium-Zinn-Laser, die ursprünglich nur bei kryogenen Temperaturen funktionierten, wurden inzwischen für den Raumtemperaturbetrieb optimiert.
Das Forschungsprojekt wurde von Dr. Dan Buca und seinem Team am Forschungszentrum Jülich geleitet. Gemeinsam mit Partnern wie dem IHP, der Universität Stuttgart und weiteren internationalen Einrichtungen haben die Forschenden die Grundlage für die Entwicklung des neuen Lasers geschaffen.
Ein Beitrag von: