Revolutionäre Vibrationsdämpfung: TU Wien erfindet magnetische Lösung
Die TU Wien hat eine neue Methode zur Dämpfung störender Schwingungen patentiert. Die Technologie hilft vor allem Präzisionsgeräten wie astronomischen Hochleistungsteleskopen.
Wenn alles wackelt, ist Präzision unmöglich. Das weiß jeder, der versucht hat, mit zittrigen Händen ein Foto aufzunehmen oder in einem rumpeligen Bus handschriftliche Notizen zu machen. Bei technischen Präzisionsmessungen sind selbst geringste Vibrationen problematisch. Sie beeinträchtigen Hochleistungsmikroskope und präzise ausgerichtete Teleskopspiegel. Auch winzige Schwingungen, die der Mensch nicht wahrnimmt, können Messungen unbrauchbar machen.
Die TU Wien hat nun eine neuartige Technologie zur Vibrationsdämpfung erfunden, die solche Probleme auf ungewöhnliche Weise löst: Elektropermanentmagnete. Diese Magnete funktionieren wie gewöhnliche Permanentmagnete, die ihren Magnetismus ohne Stromzufuhr dauerhaft aufrechterhalten. Zusätzlich sind sie mit einer Spule versehen, die es ermöglicht, ihre Magnetisierung blitzschnell durch einen Strompuls zu verändern. So lassen sich beispielsweise Vibrationen von Spiegeln in Großteleskopen aktiv unterdrücken und die Leistungsfähigkeit erheblich steigern.
Schwebende Plattform mit Nanometer-Präzision
Das System der TU Wien besteht aus einer fest montierten Basis und einer darüber freischwebenden Plattform. Diese Plattform wird durch starke magnetische Kräfte im Schwebezustand gehalten. Mehrere elektromagnetische Aktuatoren können die Position der Plattform in Sekundenbruchteilen hochpräzise justieren, auch wenn darauf eine Last von mehreren Kilogramm montiert ist.
„In sensitiven Anwendungen, wie der Positionierung von Spiegelsegmenten, muss die Position dieser Plattform auf einige 10 Nanometer genau stabil gehalten werden“, erklärt Prof. Ernst Csencsics vom Institut für Automatisierungs- und Regelungstechnik der TU Wien. „Das ist nur dann möglich, wenn man selbst winzige Bodenvibrationen ausgleicht, wie sie etwa entstehen, wenn außerhalb des Labors jemand vorübergeht, oder wie sie auch durch ganz normale Gebäudeschwingungen auftreten.“
Die Position der Plattform muss extrem genau gemessen und jede kleinste Bewegung sofort ausgeglichen werden. So lassen sich besonders Schwingungen mit niedriger Frequenz, die bei solchen Anwendungen häufig auftreten, effizient unterdrücken.
Permanentmagnete gezielt ummagnetisieren
Dem Forschungsteam gelang es, die Vorteile von Elektro- und Permanentmagneten zu kombinieren. „Das ist ein Permanentmagnet, der zusätzlich mit einer Spule versehen ist“, sagt Csencsics. Solange die Stärke des Permanentmagneten im richtigen Bereich liegt, benötigt er keinen Strom, die Schwebeplattform wird stabil gehalten. Nur kleine Korrekturmaßnahmen der Aktuatoren sind notwendig, um Schwingungen auszugleichen.
Wenn die Stärke des Permanentmagneten jedoch nicht mehr angemessen ist, zum Beispiel weil sich das Gewicht auf der Plattform verändert hat, wird ein kurzer, starker Stromimpuls durch die Spule geschickt. Dieser erzeugt für einen Augenblick ein starkes Magnetfeld und ändert somit die Magnetisierung des Permanentmagneten. Durch die passende Wahl der Magnet-Pulsstärke kann der Permanentmagnet auf einen neuen Arbeitspunkt eingestellt werden, an dem er dann wieder konstant bleibt, ohne Energiezufuhr zu benötigen.
Prototyp funktioniert, Patent angemeldet
Diese Regelung lässt sich automatisieren. Das System erkennt automatisch, ob es sich noch in der Nähe des gewünschten Arbeitspunkts befindet oder ob eine Ummagnetisierung notwendig ist. „Die dafür notwendige Regelungstechnik haben wir im Lauf der letzten zwei Jahre entwickelt, sie funktioniert bereits sehr gut“, sagt Ernst Csencsics. Unterstützt vom Forschungs- und Transfersupport der TU Wien wurde die Erfindung bereits zum Patent angemeldet.
„Wir haben mit unserem Prototyp gezeigt, dass auf diese Weise eine extrem präzise und stromsparende Vibrationsunterdrückung möglich ist“, sagt Institutsvorstand Prof. Georg Schitter. „Die Technik würde zum Beispiel perfekt zu großen Teleskopen passen, die aus mehreren Spiegelsegmenten bestehen. Das Teleskop muss auf unterschiedliche Bereiche des Himmels ausgerichtet werden können, in jeder Position müssen die Spiegel dann hochpräzise ausgerichtet und stabil gehalten werden. Genau dafür wäre unsere Technik optimal geeignet.“
Die Technologie der Elektropermanentmagnet-Vibrationsdämpfung lässt sich auch auf andere Bereiche anwenden, etwa in der Präzisionsfertigung von Halbleiterchips und großen Qualitätsoptiken oder der laborgebundenen Präzisionsmesstechnik. „Wo immer hohe Präzision erforderlich ist, die von Schwingungen gestört werden könnte, ist unsere Technologie eine interessante Lösung“, ist das Forschungsteam überzeugt.
Die Technologie wurde im Rahmen der IEEE Advanced Intelligent Mechatronics Conference in Boston publiziert und präsentiert: https://www.acin.tuwien.ac.at/file/publications/iat/pre_post_print/2024_friedl_aim.pdf
Ein Beitrag von: