So passen Terabytes von Daten in einen winzigen Kristall
Speicherrevolution: Forschende nutzen Kristalldefekte, um Terabytes an Daten in einem winzigen Materialwürfel zu speichern. Die Zukunft der Datenspeicherung?

Ein in der Studie verwendeter Kristall lädt sich unter UV-Licht auf. Der entwickelte Prozess könnte mit einer Vielzahl von Materialien verwendet werden, wobei die leistungsstarken, flexiblen optischen Eigenschaften von Seltenen Erden genutzt werden.
Foto: UChicago Pritzker School of Molecular Engineering / Zhong Lab
Seit der Erfindung der Lochkarten im 19. Jahrhundert hat sich die Datenspeicherung rasant weiterentwickelt. Ob Festplatten, USB-Sticks oder Cloud-Speicher – der Bedarf an leistungsfähigen Speichermedien steigt stetig. Forschende der University of Chicago haben nun eine Methode entwickelt, die das Speichern von Daten auf eine neue Ebene heben könnte. Sie nutzen atomare Defekte, um Terabytes von Daten in einem winzigen Kristall zu speichern, der mit bloßem Auge kaum zu erkennen ist.
Inhaltsverzeichnis
Wie klassische Speichermedien funktionieren
Traditionelle Speichertechnologien basieren auf dem Prinzip der binären Speicherung. In modernen Computern repräsentieren Transistoren die Einsen und Nullen, indem sie entweder mit hoher oder niedriger Spannung betrieben werden. Auf optischen Datenträgern wie CDs entstehen Einsen durch Vertiefungen und Nullen durch das Fehlen solcher Veränderungen.
Das größte Problem: Die Speicherkapazität ist durch die physikalische Größe dieser Speichereinheiten limitiert. Genau hier setzt die Innovation der University of Chicago an.
Kristalldefekte als Speichermedium
Das Forschungsteam um Tian Zhong, Assistenzprofessor an der Pritzker School of Molecular Engineering, entwickelte eine Methode, um binäre Daten in Kristalldefekten zu speichern. Dabei spielt ein fehlendes Atom in der Kristallstruktur eine entscheidende Rolle. „Jede Speicherzelle besteht aus einem einzigen fehlenden Atom – einem einzigen Defekt“, erklärt Zhong. „Jetzt können Sie Terabytes an Bits in einem kleinen Materialwürfel mit einer Größe von nur einem Millimeter unterbringen.“
Diese Technologie basiert auf Erkenntnissen aus der Strahlungsdosimetrie – einem Verfahren, mit dem die Strahlenbelastung von medizinischem Personal in Krankenhäusern gemessen wird. Forschende kombinierten dieses Wissen mit quanteninspirierten Methoden, um die Speicherdichte auf atomarer Ebene zu erhöhen.
Optische Steuerung der Speicherzellen
Das Prinzip hinter dieser Technik ist ebenso genial wie einfach: Die Forschenden verwenden Ionen von Seltenen Erden – insbesondere Praseodym – eingebettet in einen Yttriumoxid-Kristall. Diese Elemente haben einzigartige optische Eigenschaften und können durch UV-Laser angeregt werden.
Durch das Einstrahlen von Licht setzen die Kristalle Elektronen frei, die von den Defekten in der Kristallstruktur eingefangen werden. Je nachdem, ob sich Elektronen in den Defekten befinden oder nicht, entsteht eine binäre Information. Eine geladene Lücke entspricht einer Eins, eine ungeladene Lücke einer Null.
Das Ergebnis: In einem nur einen Millimeter großen Kristall lassen sich Milliarden solcher Speicherzellen unterbringen. Dies entspricht einer Speicherkapazität von mehreren Terabytes – auf einer Fläche, die mit bloßem Auge kaum sichtbar ist.
Anwendungsmöglichkeiten und Zukunftsaussichten
Diese Entdeckung könnte eine Vielzahl neuer Anwendungen eröffnen. Besonders in der Mikroelektronik und der optischen Datenspeicherung könnte sie klassische nichtflüchtige Speichertechnologien ablösen. Die Methode ist nicht nur platzsparend, sondern auch energieeffizient, da sie ohne mechanische Bauteile auskommt.
Darüber hinaus könnte die Technologie mit weiteren Materialien kombiniert werden, um noch flexiblere Speicherlösungen zu entwickeln. „Wir entwickeln eine neue Art von mikroelektronischem Gerät – eine quanteninspirierte Technologie“, erklärt Zhong. Die Verbindung aus Festkörperphysik und quanteninspirierten Methoden könnte langfristig dazu beitragen, die Effizienz und Kapazität von Speichern auf ein bislang unerreichtes Niveau zu heben.
Hier geht es zur Originalpublikation
Ein Beitrag von: