Weich, dehnbar, 3D-druckfähig: Diese Sensoren versprechen viel
Um die Soft-Robotik, hautintegrierte Elektronik und biomedizinische Geräte voranzubringen, hat ein US-Forschungsteam ein 3D-gedrucktes Material entwickelt, das weich und dehnbar ist. Damit nicht genug, es soll außerdem extrem leitfähig sein.
Forschende der Pennsylvania State (PennState) University haben ein neues weiches und dehnbares Material entwickelt, das in 3D gedruckt werden kann. Das Material kann zur Herstellung von tragbaren Geräten verwendet werden, zum Beispiel für einen Sensor, der am Finger getragen werden kann. Laut Forschungsteam beruht der Ansatz auf einem Verfahren, das viele Nachteile früherer Herstellungsmethoden ausschaltet, wie beispielsweise eine geringere Leitfähigkeit oder das Versagen von Geräten.
Weiche und dehnbare Sensoren bisher nicht sehr leitfähig
„Seit fast einem Jahrzehnt werden weiche und dehnbare Sensoren entwickelt, aber die Leitfähigkeit ist in der Regel nicht sehr hoch“, sagte der korrespondierende Autor Tao Zhou, PennState Assistenzprofessor für Ingenieurwissenschaften und Mechanik und für Biomedizintechnik am College of Engineering und für Materialwissenschaften und Technik am College of Earth and Mineral Sciences.
Zhou weiter: „Die Forscher erkannten, dass sie mit Leitern auf Flüssigmetallbasis eine hohe Leitfähigkeit erreichen können, aber die wesentliche Einschränkung dabei ist, dass eine sekundäre Methode zur Aktivierung des Materials erforderlich ist, bevor es eine hohe Leitfähigkeit erreichen kann.“
Keine sekundäre Aktivierung notwendig
Dehnbare Leiter auf Flüssigmetallbasis leiden unter einer angeborenen Komplexität und den Herausforderungen des Aktivierungsprozesses nach der Herstellung, so das Forschungsteam. Zu den sekundären Aktivierungsmethoden gehören Dehnung, Kompression, Scherreibung, mechanisches Sintern und Laseraktivierung, die allesamt zu Problemen bei der Herstellung und zum Auslaufen des Flüssigmetalls führen können, was einen Ausfall des Bauteils zur Folge haben kann.
„Unsere Methode erfordert keine sekundäre Aktivierung, um das Material leitfähig zu machen“, sagte Zhou, der auch mit den Huck Institutes of the Life Sciences und dem Materials Research Institute verbunden ist. „Das Material kann sich selbst zusammensetzen, so dass seine untere Oberfläche sehr leitfähig und seine obere Oberfläche selbst isolierend ist“.
So funktioniert das neue Material
Bei der neuen Methode kombinieren die Forscher Flüssigmetall, ein leitfähiges Polymergemisch namens PEDOT:PSS und hydrophiles Polyurethan, das die Umwandlung des Flüssigmetalls in Partikel ermöglicht. Wenn das weiche Verbundmaterial gedruckt und erhitzt wird, ordnen sich die Flüssigmetallpartikel auf seiner Unterseite selbst zu einem leitfähigen Pfad an.
Die Partikel in der oberen Schicht werden einer sauerstoffreichen Umgebung ausgesetzt und oxidieren, wodurch eine isolierte obere Schicht entsteht. Die leitfähige Schicht ist entscheidend für die Übertragung von Informationen an den Sensor – wie z. B. die Aufzeichnung der Muskelaktivität und die Erfassung von Belastungen am Körper -, während die isolierte Schicht dazu beiträgt, Signalverluste zu verhindern, die zu einer weniger genauen Datenerfassung führen könnten.
Erfindung ist Materialinnovation
„Unsere Erfindung hier ist eine Materialinnovation“, sagte Zhou. „Wenn sich flüssiges Metall mit Polymeren vermischt, sind diese normalerweise nicht leitfähig und erfordern eine sekundäre Aktivierung, um Leitfähigkeit zu erreichen. Aber diese drei Komponenten ermöglichen die Selbstorganisation, die die hohe Leitfähigkeit des weichen und dehnbaren Materials ohne eine sekundäre Aktivierungsmethode erzeugt.“
Das Material kann auch in 3D gedruckt werden, so Zhou, was die Herstellung von tragbaren Geräten erleichtert. Die Forscher erforschen weiterhin mögliche Anwendungen, wobei der Schwerpunkt auf Hilfstechnologien für Menschen mit Behinderungen liegt.
Die Ergebnisse wurden in Advanced Materials veröffentlicht.
Ein Beitrag von: