ALPACA und LLAMA sollen die Leistung künftiger Fusionskraftwerke verbessern
Sie sehen aus wie Lochkameras und sollen helfen, die Vorgänge im Plasma besser zu verstehen. Ein Forschungsteam aus Princeton hat zwei Diagnoseinstrumente entwickelt, die die Hitze bei der Kernfusion erhöhen sollen.
Wissenschaftler des U.S. Department of Energy am Princeton Plasma Physics Laboratory (PPPL) haben ein neues Plasmamessgerät fertiggestellt, das die Manipulation von Plasma, dem elektrisch geladenen vierten Aggregatzustand, erleichtern soll. Dieses Diagnosegerät könnte die Hitze von Fusionsreaktionen in Tokamaks erhöhen und die Leistung zukünftiger Fusionskraftwerke verbessern. Genauer gesagt handelt es sich nicht um ein Diagnosegerät, sondern um Zwillinge, die auf die Namen ALPACA und LLAMA getauft wurden.
Wie funktioniert ALPACA?
Der Wasserstoffbrennstoff in Fusionsreaktoren stammt aus drei verschiedenen Quellen. Zuerst wird Wasserstoff zur Erzeugung des Plasmas in den Tokamak eingespritzt. In kühleren Bereichen der Kammer verbinden sich Kerne und Elektronen zu Wasserstoffatomen. Eine dritte Quelle sind Leckagen aus dem Material der inneren Kammerwände des Reaktors.
Das Diagnosegerät ALPACA soll Wissenschaftlern helfen, die Brennstoffzufuhr besser zu verstehen, indem es den Übergang von neutralen Atomen zu Elektronen und Ionen untersucht, die ins Plasma eintreten. Dies beeinflusst die Plasmadichte und damit die Anzahl der Fusionsreaktionen. „Wenn wir die Plasmadichte erhöhen können, dann können wir mehr Fusionsreaktionen und somit mehr Energie erzeugen“, erklärte Laszlo Horvath, ein am PPPL stationierter Physiker, in einer Pressemitteilung.
ALPACA ist fast einen Meter lang und funktioniert ähnlich wie eine Lochkamera und misst das Plasmalicht bei der sogenannten Lyman-alpha-Wellenlänge. Frühere Messungen mit anderen Instrumenten waren schwer zu deuten. ALPACA ist das erste Gerät, das speziell für diese Frequenz entwickelt wurde und liefert präzise Daten.
3D-Druck half bei der Konstruktion von ALPACA
Die Konstruktion von ALPACA nutzte 3D-Drucktechnologie, um eine Hohlkammer für Kühlleitungen in das Haupttragwerk zu integrieren. „Ohne 3D-Druck wäre die Bearbeitung dieses Teils unmöglich gewesen“, sagte David Mauzey, ein Student der San Diego State University und technischer Mitarbeiter bei PPPL.
Mauzey war auch für die maschinenbaulichen Aspekte des ALPACA-Projekts verantwortlich. „Dies war das erste große Projekt, bei dem ich den Großteil des Maschinenbaus geleitet habe. Es gab Herausforderungen, wie die Positionierung der optischen Komponenten, aber der Prozess war sehr bereichernd.“
Zusammenarbeit mit seinem Zwilling
ALPACA und sein Zwillingsgerät LLAMA, kurz für „Lyman-alpha measurement apparatus“, sind zwei komplementäre Diagnosegeräte. Während LLAMA die inneren und äußeren Bereiche des unteren Teils des Tokamaks überwacht, konzentriert sich ALPACA auf die entsprechenden Bereiche des oberen Teils.
„Wir benötigen beide Geräte, da die Verteilung neutraler Atome im Plasma variiert und wir nicht genau wissen, wo sie sich ansammeln“, erklärt Alessandro Bortolon, leitender Forschungsphysiker am PPPL und Leiter der Zusammenarbeit mit der DIII-D National Fusion Facility. „Deshalb und weil wir nicht von einzelnen Messpunkten auf das Ganze schließen können, ist es wichtig, an mehreren Orten zu messen.“
ALPACA wird derzeit getestet und soll nach den geplanten Wartungsarbeiten am Tokamak-Reaktor D-III D des PPPL in Betrieb genommen werden, wie aus einer Pressemitteilung hervorgeht.
Ein Beitrag von: