Betonkugeln im Bodensee sollen Windstrom speichern
Die Idee ist genial: Warum nicht Energie in riesigen, hohlen Betonkugeln am Meeresgrund speichern? Dass dies funktioniert, wurde nun im Bodensee nachgewiesen. Wenn sich die Technik weiter bewährt, könnten Offshore-Windparks mit Kugeln ausgestattet werden, die jeweils 20 MWh speichern können.
Das Projekt Stensea – Stored Energy in the Sea, das eine neuartige Form von Pumpspeicherkraftwerken am Meeresboden erforscht, konnte seinen ersten Testlauf erfolgreich abschließen. Die erprobte Technologie ist so wegweisend, dass sie mit mehreren Preisen geehrt wurde: Das Netzwerk Erneuerbare Energien Hamburg (EEHH) verlieh dem Stensea-Team den German Renewables Award 2017, zudem ist das Projekt Preisträger des Wettbewerbs „Ausgezeichnete Orte im Land der Ideen“ 2018.
Energiewende erfordert neue Speicherstrategien
Neben Anlagen zur Erzeugung und Weiterleitung von Strom sind effiziente Speichersysteme die dritte große Herausforderung beim Umbau der Energieversorgung. Denn weder der Energiebedarf noch die erzeugten Energiemengen sind im Tages- und Jahreszeitenverlauf konstant. Entsprechend passen sie nur durch Zufall und in den seltensten Fällen zueinander. Aus diesem Grund hat die Bundesregierung von 2011 bis 2017 rund 184 Millionen Euro in die Förderinitiative Energiespeicher investiert. Ein Teil davon kam Stensea zugute. Dass das Geld sinnvoll investiert wurde, zeigen die Ergebnisse des ersten Testlaufs zum Nachweis der Machbarkeit im Bodensee.
Funktionsweise der 10.000 Tonnen schweren Betonkugeln
Das Puffersystem, das sich Ingenieure des Essener Baukonzerns Hochtief und des Fraunhofer-Instituts für Energiewirtschaft und Energiesystemtechnik IEE in Kassel ausgedacht haben, besteht aus hohlen Betonkugeln mit einem Durchmesser von 30 Metern. Sie haben drei Meter dicke Betonwände und sollen auf dem Meeresgrund gleich neben Offshore-Windparks errichtet werden. Jede Kugel wiegt rund 10.000 Tonnen.
Besteht an Land Strombedarf, öffnet sich ein Ventil an der Spitze der Kugeln. Meerwasser schießt mit hohem Druck in den Hohlraum. Dabei treibt das Wasser einen Turbogenerator an, der Strom erzeugt. In Zeiten mit Stromüberschuss wird das Wasser wieder hinausgepumpt, also Energie gespeichert. Um als Puffer eines Offshore-Windparks zu dienen, müssten zwischen 80 und 200 Kugeln installiert werden. Das ergäbe eine Speicherkapazität zwischen 1.600 und 4.000 Megawattstunden.
Die Vorteile eines Unterwasser-Pumpspeicherkraftwerks sind enorm: Die Anbindung an die Windparks ermöglicht die Mitnutzung der bereits vorhandenen Infrastruktur wie der Anschlussleitungen zum Festland, es gibt keine Landschaftsverschandelung und keine negative Beeinflussung der Tier- und Pflanzenwelt. Der Wirkungsgrad soll wie bei Pumpspeichern an Land bei ca. 75% bis 80% liegen. Das Speicherpotenzial schätzt der Leiter des Projekts, Matthias Puchta, auf 817 Terawattstunden Strom weltweit. Pro Kugel sind 20 Megawattstunden anvisiert. Unter anderem für die Verbesserung solcher Schätzungen war der Test im Bodensee ein wichtiger Vorbereitungsschritt.
Erkenntnisse aus dem Speichertest im Bodensee
Im Bodensee wurde eine Kugel im Maßstab 1:10 mit einem Durchmesser von 3 Metern und einem Gewicht von 20 Tonnen in 100 Meter Tiefe versenkt (wir berichteten über den Testlauf im November 2016). Eine wirtschaftliche und materialgerechte Nutzung erfordert später Tiefen von 600 bis 800 Metern. Dafür spielen mehrere Faktoren eine Rolle: Je tiefer die Anlage liegt, desto höher ist der Wasserdruck und desto mehr Energie kann gespeichert werden. Mit heutiger Pumpentechnik sind 700 Meter das Maximum. Der Beton muss aber auch dem Druck standhalten, die Pumpe muss das Wasser wieder aus der Kugel herausbefördern können und das Gesamtgewicht muss ausreichen, um dem volumenabhängigen Auftrieb erfolgreich entgegenzuwirken. Denn auf eine kostenintensive Verankerung kann man bei geschickter Dimensionierung verzichten, das ist eine Erkenntnis aus dem Bodenseetest.
Außerdem war den Forschern vorab nicht klar, ob eine permanente Verbindung zur Wasseroberfläche, eine sogenannte Druckausgleichsleitung, nötig sein würde. Sie hat die Aufgabe, den Druck im Inneren der Kugel oberhalb der Wassersäule bei konstant einem Bar zu halten. Nun fand das Team heraus, dass das System auch ohne eine solche Leitung funktioniert, wenn man eine kleine Restmenge an Luft in der Kugel belässt. Welche Auswirkungen Variationen bei der Luftmenge haben, ließ sich in mehreren Testzyklen ermitteln. Darauf basierend sind Simulationen für die zukünftig geplanten großen Kugeln mit 30 Metern Durchmesser viel genauer. Auf die Druckausgleichsleitung verzichten zu können, bedeutet zudem eine erhebliche Kostenersparnis und geringeren Aufwand bei der Errichtung und der Wartung des Systems.
Zukunftsperspektiven der Betonkugeln als Energiespeicher
Die durchweg positiven Erfahrungen aus dem Testbetrieb stimmen die Forscher optimistisch, in nicht allzu ferner Zukunft eine noch größere Kugel, diesmal im Meer, versenken zu können. Damit ist zwischen 2020 und 2022 zu rechnen. Mit dem dreifachen Durchmesser soll dann schon das 50- bis 100-fache an Energie gespeichert werden können. Bis dahin sind noch geeignete Standorte zu suchen, Finanzierungsfragen zu klären und die Ergebnisse des Bodenseetests weiter auszuwerten. Der Bau der 30-Meter-Kugel selbst ist zum Beispiel noch weit entfernt: Eine hohle Betonkugel solcher Größe wurde schlicht noch nie gegossen. Allein ihre Herstellung stellt eine eigene Herausforderung dar. Daran wird Stensea aller Voraussicht nach aber nicht scheitern.
Ein ähnliches Konzept, ebenfalls mit Betonkugeln unter Wasser, verfolgen Forscher am Massachusetts Institute of Technology in Cambridge in den USA. Forscher des kanadischen Unternehmens Hydrostore wollen statt der Betonkugel riesige Unterwasserballons einsetzen, die aufgepumpt und entleert werden. Ein ungewöhnliches Konzept haben sich auch belgische Ingenieure ausgedacht. Sie wollen vor der Küste eine künstliche Insel mit einem großen Loch in der Mitte anschütten. Durch wechselnden Wasserspiegel wollen sie so überschüssige Offshore-Energie speichern.
Ein Überblick über Technologien des Energiespeicherns
Dresdner Forscher arbeiten derweil an Energiespeichern nach dem Vorbild der Tiefsee
Und in der Schweiz haben Forscher einen Speicher gebaut, der die Sommerwärme bis zum Winter bewahren kann
In den USA soll der Hoover-Damm zum Energiespeicher werden
Ein Beitrag von: