Darum sind Solarzellen nach dem Vorbild der Rose effizienter
Rosen sehen nicht nur unglaublich gut aus, sie sind auch Meister darin, Sonnenlicht optimal zu nutzen. KIT-Forscher haben die Mikrostrukturen der Blüten studiert und nach deren Vorbild eine organische Solarzelle konstruiert. Dieser simple bionische Trick funktioniert – die Solarzelle produziert mehr Strom. Warum?
Es ist ein prachtvoller Anblick, wenn die Blüten der Königin des Gartens in allen Schattierungen von dunkelrot bis zartrosa in der Sonne leuchten. Viele Menschen erfreuen sich an den intensiven Farben der Rosenblüten im Sommer. Dabei leuchten diese nicht aus Selbstzweck so schön, sondern weil die starken Farbkontraste die Chancen auf Bestäubung durch Insekten erhöhen.
Photovoltaik ähnelt der Photosynthese
Nun haben sich Photovoltaik-Forscher des Karlsruher Instituts für Technologie (KIT) der zarten Rose angenähert und untersucht, wie die Gartenkönigin diese Farbkontraste erzeugt. Ausgangspunkt war der Gedanke, dass die Photovoltaik der von Pflanzen betriebenen Photosynthese ähnelt. Auch bei der Photosynthese wird Lichtenergie absorbiert und in eine andere Energieform überführt.
Für die Pflanzen ist es enorm wichtig, das Lichtspektrum der Sonne möglichst breit zu nutzen und das Licht aus verschiedenen Einfallswinkel aufzunehmen. Denn die Sonne bewegt sich im Tagesverlauf von Osten nach Westen. In ihrer langen Evolutionsgeschichte haben die Pflanzen gelernt, dieses unterschiedliche Lichtangebot optimal aufzunehmen.
Rosenblütenblätter als Vorbild für Solartechnik
Es ist das Abschlussgewebe von Blättern höherer Pflanzen, Epidermis genannt, dem es gelingt, das Licht aus allen einfallenden Winkeln optimal einzufangen. Das haben die Forscher am KIT in Gemeinschaft mit anderen Forschungsinstituten herausgefunden, indem sie die epidermalen Zellen verschiedener Pflanzenarten auf ihre optischen Eigenschaften und auf ihre Antireflexwirkung untersucht haben.
Und bei dieser Untersuchung waren die Rosenblütenblätter klarer Favorit. Unter dem Elektronenmikroskop zeigte sich, das die Epidermis der Blätter einer Rosenblüte aus einem ungeordneten Feld dicht gedrängter Mikrostrukturen besteht, das zusätzlich gerippt ist durch zufällig platzierte Nanostrukturen.
Polymer auf Siliziumbasis als Negativ
Um diese Struktur zu reproduzieren, übertrugen die Forscher sie in eine Form aus Polydimethylsiloxan. Dieses Negativ drückten sie in einen optischen Kleber hinein, den sie unter UV-Licht aushärteten.
„Diese Methode ist einfach und kostengünstig und erzeugt Mikrostrukturen von einer Tiefe und Dichte, wie sie sich mit künstlichen Techniken kaum erreichen lassen“, berichtet Dr. Guillaume Gomard, Leiter der Gruppe Nanophotonik am Lichttechnischen Institut (LTI) des KIT. Die so hergestellte transparente Nachbildung der Rosenblütenblätter-Epidermis integrierten die Wissenschaftler in eine organische Solarzelle.
Zwölf Prozent effektiver bei senkrechtem Lichteinfall
Schlagartig erhöhte sich die Energieumwandlungseffizienz bei senkrechtem Lichteinfall um zwölf Prozent. Bei sehr flachen Einfallswinkeln war die Steigerung der Effizienz noch größer. Vor allem die hervorragende richtungsabhängige Antireflexwirkung der nachgebauten Epidermis ist für diese Effizienzsteigerung verantwortlich. Diese ist in der Lage, die Oberflächenreflexion unter fünf Prozent zu halten, selbst bei extrem flachen Lichteinfallswinkel von fast 80 Grad.
Zellen fungieren als Mikrolinse
Dazu gesellt sich ein weiterer Effekt: Jede einzelne der nachgebildeten epidermischen Zellen fungiert als Mikrolinse. Das zeigten Untersuchungen mit einem Konfokal-Lasermikroskop. Durch diesen Mikrolinseneffekt verlängert sich der Weg des Lichts innerhalb der Solarzelle und erhöht die Wahrscheinlichkeit, dass Lichtteilchen absorbiert werden.
„Unsere Methode lässt sich sowohl auf weiter Pflanzenarten als auch auf andere Photovoltaiktechnologien anwenden“, erklärt Guillaume Gomard. „Da die Oberflächen von Pflanzen multifunktional sind, könnte es künftig möglich sein, von ihnen mehre Eigenschaften in einem Schritt zu übernehmen.“ Der Forscherverbund hat seine Erkenntnisse jetzt in der Zeitschrift Advanced Opticals Materials publiziert.
Auf die Rose abgesehen haben es auch schwedische Forscher. Sie haben in den winzigen Versorgungskanälen der Rose die wichtigsten Bauteile elektronischer Schaltkreise installiert. Sogar zum Leuchten bringen die Forscher ihre Rosen. Wofür? Sie wollen die Energie der Photosynthese nutzen und einmal direkt Strom in „Energiepflanzen“ erzeugen.
Ein Beitrag von: