Energieverbrauch von Batteriefabriken ist riesig, doch es gibt Hoffnung
Batteriefabriken, die zum Beispiel Akkus für E-Autos herstellen, haben einen riesigen Energiebedarf und der wird in Zukunft weiter wachsen. Die gute Nachricht: Forschende haben herausgefunden, dass sich die Batteriezellproduktion so optimieren lässt, dass jede Menge Energie eingespart werden kann.
Basierend auf dem aktuellen Stand der Produktions- und Fertigungstechnik wird erwartet, dass der Strombedarf der global geplanten Batteriefabriken bis 2040 rund 130.000 Gigawattstunden pro Jahr erreichen wird. Dies entspricht dem heutigen Elektrizitätsverbrauch von Ländern wie Norwegen oder Schweden. Zu dieser Erkenntnis gelangte eine Studie, die unter der Leitung von Dr. Florian Degen in Zusammenarbeit mit der Fraunhofer-Einrichtung Forschungsfertigung Batteriezelle FFB, dem MEET der Universität Münster, dem Helmholtz-Institut Münster und der Universität Münster durchgeführt wurde.
Es gibt jedoch Hoffnung: Durch Innovationen in Produktions- und Fertigungstechnologien könnte der Energieverbrauch in der Batteriezellproduktion um bis zu 66 Prozent reduziert werden. Dies entspricht dem Energieverbrauch von Belgien oder Finnland im Jahr 2021. Diese Ergebnisse wurden kürzlich in der renommierten Fachzeitschrift „Nature Energy“ publiziert.
Wie stark belastet die Batterieherstellung die Ökobilanz von E-Autos?
Kritiker von E-Autos bemängeln immer wieder, dass die Ökobilanz der Stromer gar nicht so gut sei, wie der Allgemeinheit immer vorgegaukelt wird. Hintergrund: Die Produktion der Batterien würde einen hohen CO2-Ausstoß verursachen. Verschiedene Studien sollten dies beweisen. Neuere Untersuchungen relativieren die Ergebnisse und zeigen, dass der Strommix bei der Herstellung entscheidend ist. Generell lässt sich jedoch schwer beziffern, wie hoch die Umweltbelastung tatsächlich ausfällt.
Mia Romare und Lisbeth Dahllöf von der Beratungsfirma IVL haben dies im Auftrag des schwedischen Verkehrsministeriums versucht. Der Fokus bei der Studie lag auf Lithium-Ionen-Batterien, die in E-Autos als Energiespeicher dienen. Sie kamen zu dem Schluss, dass für jede Kilowattstunde Speicherkapazität rund 97 bis 180 Kilowattstunden Energie benötigt werden. Dabei werden 150 bis 200 Kilogramm CO2 verursacht.
Da die Untersuchung bereits vor einigen Jahren stattgefunden hat, dürfte sich die Bilanz inzwischen verbessert haben, da immer mehr grüner Strom zum Einsatz kommt und die Produktionsprozesse verbessert wurden. Die neueste Studie des Fraunhofer FFB belegt dies: Sie kommt auf einen Wert von 20 bis 40 Kilowattstunden Energie für die Produktion von einer Kilowattstunde Speicherkapazität.
Weltweiter Batteriebedarf wird sich bis 2030 versechsfachen
Die wachsende Beliebtheit von Elektrofahrzeugen führt zu einer rasanten Expansion des Batteriemarktes und verstärkt den Bedarf an Batteriezellfabriken. Eine Prognose des Weltwirtschaftsforums in Zusammenarbeit mit der Global Battery Alliance zeigt, dass der globale Batteriebedarf bis 2030 2.600 Gigawattstunden pro Jahr ansteigen wird. Zum Kontext: Im Jahr 2022 betrug dieser Bedarf lediglich etwa 400 Gigawattstunden. Ein kritischer Punkt dabei ist, dass die aktuelle Produktion von Batteriezellen sehr energieintensiv ist und erhebliche Treibhausgasemissionen verursacht. Wir haben dies im Abschnitt davor dargelegt.
Angesichts der steigenden Bedeutung von Batteriezellen stellt sich die Frage, wie der Energieverbrauch in deren Produktion zukünftig gestaltet und möglicherweise reduziert werden kann. Dieser Frage haben sich das Forscherteam um Dr. Florian Degen (Fraunhofer FFB), Prof. Dr. Martin Winter (MEET der Universität Münster und Helmholtz-Institut Münster), Prof. Dr. Jens Tübke (Fraunhofer FFB, KIT) und Prof. Dr. David Bending (Universität Münster; REACH – EUREGIO Start-up Center) angenommen. Sie untersuchten den Energieaufwand aktueller und künftiger Produktionsmethoden sowohl auf Batteriezellebene als auch in makroökonomischer Hinsicht. Dabei wurde speziell zwischen Lithium-Ionen-Batterien (LIBs) und den alternativen Post-Lithium-Ionen-Batterien (PLIBs) differenziert.
Strombedarf wird sich bis 2040 auf 130.000 Gigawattstunden im Jahr vervielfachen
In der Automobilbranche und anderen Industriebereichen steht die Hochskalierung der Batteriezellproduktion noch am Anfang. Dennoch betont Dr. Florian Degen, Studienautor und Leiter des Bereichs Strategie- und Unternehmensentwicklung am Fraunhofer FFB, die Bedeutung des künftigen Energiebedarfs: „Nicht nur in Europa, sondern auch in Asien und Nordamerika wird der Bau von Batteriezellfabriken gefördert, um den notwendigen Mobilitätswandel voranzutreiben. Der Strombedarf wird sich bis 2040 auf 130.000 Gigawattstunden im Jahr vervielfachen. Dies entspricht dem jährlichen Strombedarf von Norwegen oder Schweden im Jahr 2021.“
Die Studie zeigt weiterhin, dass nach aktuellem Stand der Technik zwischen 20 und 40 Kilowattstunden Energie für die Herstellung einer Batteriezelle mit einer Kapazität von einer Kilowattstunde benötigt werden. Dies variiert je nach Batterietyp und berücksichtigt nicht den Energieaufwand für das Material.
Es besteht jede Menge Einsparpotenzial
Jüngste Forschungsergebnisse zeigen, dass technologische Fortschritte in der Produktionskette – wie der Einsatz von Wärmepumpen, neue Trocknungsmethoden, fortschrittliche Trockenraumkonzepte und andere Innovationen – in Kombination mit Lern- und Skaleneffekten ein Energieeinsparpotenzial von bis zu 66 Prozent bis 2040 ermöglichen.
Diese prognostizierte Energieeinsparung entspricht dem Stromverbrauch von Ländern wie Belgien oder Finnland im Jahr 2021. Darüber hinaus legen die Ergebnisse der Studie nahe, dass alternative Batterietechnologien wie Feststoffbatterien in der Produktion pro Speicherkapazität deutlich energieeffizienter sind als die heutigen Lithium-Ionen-Batterien.
Künftige Batterien werden nach neuen Kriterien ausgewählt
Derzeit sind Lithium-Ionen-Batterien (LIBs) aufgrund ihrer hohen Energiedichte und Langlebigkeit, mit Ladezyklen von 1.000 bis 6.000 Zyklen, die vorherrschende Technologie auf dem Markt. Sie eignen sich ideal für eine Vielzahl von Anwendungen, von Elektroautos und -lastwagen bis hin zu stationären und tragbaren Geräten.
Prof. Dr. Martin Winter, wissenschaftlicher Leiter des MEET Batterieforschungszentrums an der Universität Münster und Direktor des Helmholtz-Instituts Münster, betont: „Neben exzellenter Performanz und weitestgehender Recyclingfähigkeit werden die Energieeffizienz und die damit zusammenhängenden Kosten – sowohl für den Zusammenbau als auch für den Betrieb von Batteriezellen – in Zukunft immer mehr die Technologiewahl mitbestimmen, gerade auch für Batterien jenseits der Lithium-Ionen-Technologie.“
Erforschung innovativer Produktionstechnologien
Das Forschungszentrum Fraunhofer FFB konzentriert sich auf die Entwicklung von fortschrittlichen und innovativen Produktionstechnologien für Batterien. Mit einem reichen Fundus an wissenschaftlichen und praktischen Erfahrungen und durch Untersuchungen ihrer eigenen Infrastruktur entwickeln sie Lösungsansätze, die die gesamte Wertschöpfungskette verbessern.
Besondere Environment-Lösungen können beispielsweise dazu beitragen, Energie- und Betriebskosten erheblich zu senken. Dr. Florian Degen betont: „ Unser Ziel ist es einerseits die Produktion von heutigen Batterien (LIBs) nachhaltiger und kostengünstiger zu gestalten, andererseits die industrielle Produktion von zukünftigen Batteriezellen (PLIBs) überhaupt erst zu ermöglichen.“
Weitere Forschungs- und Entwicklungsaktivitäten notwendig
Die Autoren der Studie betonen, dass die Fertigung von Batteriezellen eine entscheidende Rolle für die Mobilitätswende und dem Erreichen nationaler Klimaschutzvorgaben einnimmt. Sie prognostizieren, dass die Lithium-Ionen-Technologie den Batteriemarkt in den nächsten Jahren weiter dominieren wird, zumindest vorläufig.
Angesichts des hohen Energieverbrauchs in Batteriefabriken sei es essenziell, in Forschung und Entwicklung, besonders in Bezug auf alternative Batterietechnologien, in Deutschland und Europa zu investieren. Dies könnte perspektivisch zu einer Energieeinsparung von über 50 Prozent des aktuellen Bedarfs führen.
Ein Beitrag von: