Explosionsgefahr gebannt: Glasfaser-Sensoren erkennen Wasserstoff
Wasserstoff gewinnt in Zeiten erneuerbarer Energien als Energiespeicher an Bedeutung, doch zusammen mit Luft ist das Gas in weiten Grenzen explosiv. Deshalb haben Fraunhofer-Forschende einen neuen Sensor zur Überwachung entwickelt.
Wasserstoff ist der wichtigste chemische Energieträger beim Wandel von fossilen hin zu klimaneutralen, regenerativen Energien. Bereits heute werden 55 Terrawattstunden (TWh) bis 60 TWh Wasserstoff in Deutschland produziert und verbraucht. Dabei handelt es sich aber größtenteils um „grauen“ Wasserstoff aus Erdgas; nur etwa fünf Prozent sind „grüner“ Wasserstoff – Tendenz steigend.
Zwar ist das Gas nicht giftig, allerdings führen Leckagen schnell zu kritischen Situationen. Enthält Luft mehr als 4% an Wasserstoff, entstehen explosionsfähige Gemische. Das kann etwa in schlecht belüfteten Räumen passieren. Bereits ein Funke kann schwere Knallgas-Explosionen auslösen. Für Ingenieurinnen und Ingenieure bedeutet das: Sie müssen deutlich höhere Maßstäbe bei der Sicherheit anlegen als bei Kohlenwasserstoffen. Dazu gehört, Wasserstoff in der Luft schon bei niedrigen Konzentrationen zu erfassen, etwa mit Glasfaser-Sensoren. Solche Technologien hat das Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI, jetzt entwickelt.
Kraftstoffe aus erneuerbaren Energien: Forscher entwickeln Benzinzusatz aus Riesengras
Herkömmliche Sensoren sind bei Wasserstoff schlecht geeignet
Der Hintergrund: Schon seit Jahren gibt es Messgeräte, um Wasserstoff in Gasgemischen zu detektieren. „Herkömmliche Sicherheitssensoren, die zur Erfassung von Wasserstoff derzeit kommerziell verfügbar sind – das sind in der Regel katalytische Wärmetönungssensoren oder elektrochemische Zellen –, benötigen eine elektrische Stromversorgung“, erklärt Günter Flachenecker vom Fraunhofer HHI. „Beide Varianten könnten so, wenn das Gerät oder die elektrischen Zuleitungen einen Defekt aufweisen, im schlimmsten Fall selbst als Zündquelle die Explosion auslösen, die sie eigentlich verhindern sollten.“ Glasfasersensoren haben solche Schwachpunkte nicht. Diese sind auch nicht aufwändig zu verkabeln; sie lassen sich relativ problemlos in unterschiedliche Anwendungen integrieren. Dazu gehören stationäre Anlagen, aber auch Fahrzeuge zum Transport von Wasserstoff.
Verbundprojekt „H2WOOD – BLACKFOREST“: Regenerativer Wasserstoff aus regionalen Holzabfällen
Mit Glasfasern Wasserstoff nachweisen
Lichtleitende Glasfasern hätten Flachenecker zufolge jedoch mehrere wünschenswerte Eigenschaften. Sie sind robust und haben Durchmesser von zirka einem Viertel Millimeter, was ihren Einsatz in sicherheitsrelevanten Anwendungen ermöglicht. Doch zunächst haben die Ingenieurinnen und Ingenieure Glasfasern für den geplanten Einsatz vorbereitet. Per Laser wurden feine Strukturen in den ihren Kern eingeprägt, sogenannte Faser-Bragg-Gitter. Das sind Interferenzfilter, sprich optische Bauelemente, die Licht frequenzabhängig reflektieren.Im nächsten Schritt wurden die Glasfasern mit Palladium oder speziellen Legierungen dieses Metalls beschichtet.
„Palladium hat die Eigenschaft, dass es Wasserstoff aufsaugt, ähnlich wie ein Schwamm“, sagt der Forscher. „Sobald die beiden Stoffe aufeinandertreffen, zerfällt der Wasserstoff in seine atomaren Fragmente und die freigesetzten Wasserstoffatome dringen in das Kristallgerüst des Palladiums ein.“ Das führe zu einer Dehnung der Glasfaser – und über Faser-Bragg-Gitter könne man augenblicklich Veränderungen der Lichtimpulse messen. Das Gute daran: Sinkt in der umgebenden Luft die Wasserstoffkonzentration wieder, entweicht das Gas aus dem Palladium und die Glasfasern kehren in ihre normale Geometrie zurück. Der Sensor kann langfristig eingesetzt werden. Andere Gase, etwa Kohlenwasserstoffe, stören die Messung nicht. Nur Moleküle mit kleiner Geometrie können mit Palladium wechselwirken; größere, etwa Stickstoff, Sauerstoff oder Kohlenwasserstoffe, führen zu keinen optischen Effekten. Die Detektoren sind nicht nur baulich robust, sondern auch kaum störanfällig für sonstige Gase.
Umfangreiche Einsatzmöglichkeiten des Wasserstoff-Detektors
Vor diesem Hintergrund können sich Flachenecker sowie seine Kolleginnen und Kollegen zahlreiche Einsatzmöglichkeiten der neuen Sensoren vorstellen. Das beginnt bei Fahrzeugen mit Wasserstoffantrieb und geht weiter bei Wasserstofftankstellen. Auch Werkstätten, die solche Fahrzeuge reparieren, könnten von der neuen Technologie ebenfalls profitieren. Weitere Einsatzmöglichkeiten ergeben sich bei Elektrolyseuren, die Strom aus erneuerbaren Energien nutzen, um Wasserstoff herzustellen.
Der Vorteil der Technologie: Sensoren und elektronische Komponenten zur Analyse der optischen Signale lassen sich räumlich entfernt platzieren, was gefahrlose Messungen ermöglicht. Wird eine bestimmte Wasserstoffkonzentration überschritten, lösen Systeme nicht nur Alarm aus. Sie können auch Fenster öffnen oder Ventile schließen.
Wasserstoff-Sensoren auf dem Weg zur Kommerzialisierung
Das Projekt wird vom Bundesministerium für Wirtschaft und Klimaschutz gefördert. Lokale Brandschutzunternehmen sind als kommerzielle Partner mit im Boot. Ziel des ersten Projekts war, Glasfasersensoren in LKWs einzubauen. Nach dem erfolgreichen Abschluss dieser Phase geht es jetzt darum, den Wasserstoff-Sensor weiter zu testen: als Vorbereitung für die Zertifizierung und Kommerzialisierung.
Mehr zum Thema Wasserstoff
Ein Beitrag von: