Farbstoffe sollen organischen Solarzellen schnelle Beine machen
Organische Solarzellen haben viele Vorteile, lassen sie sich doch nahezu überall anbringen. Es fehlt ihnen bislang jedoch an Effizienz. Ein Forschungsteam der TU München hat nun untersucht, wie man der aus der Sonne gewonnenen Energie schnellere Beine machen kann.
Die Sonne schickt enorme Energiemengen zur Erde. Leider wird ein Teil dieser Energie in Solarzellen nicht effizient genutzt, insbesondere in organischen Solarzellen, die für fortschrittliche Technologien in Betracht gezogen werden. Ein Hauptproblem bei ihrer Anwendung ist der Energieverlust. Ein Ansatz zur Effizienzsteigerung ist die Optimierung des Energietransports innerhalb des Materials. Eine Forschungsgruppe der Technischen Universität München (TUM) hat herausgefunden, dass spezielle organische Farbstoffe dabei helfen können, effiziente Energietransportwege zu schaffen, die mit Autobahnen vergleichbar sind.
Das sind organische Solarzellen
Organische Solarzellen, oft auch als „Plastiksolarzellen“ oder „Plastiksolarzellen“ bezeichnet, werden aus Kohlenwasserstoffverbindungen hergestellt. Es gibt eine Vielzahl möglicher organischer Verbindungen, die für diese Solarzellen verwendet werden können, wobei konjugierte Polymere und speziell entwickelte Hybridstrukturen wie Kupferphthalocyanin besonders häufig eingesetzt werden.
Organische Solarzellen können als eine besondere Variante der Dünnschicht-Solarmodule angesehen werden. Ihre einzigartige Elektronenstruktur verleiht ihnen Eigenschaften, die denen von Halbleitern aus amorphem Silizium ähneln.
Ein wesentlicher Vorteil organischer Solarzellen ist ihre kostengünstige Herstellung. Das liegt daran, dass die benötigten Kunststoffe günstig hergestellt werden können. Zudem sind keine Hochtemperaturprozesse oder intensive Reinigungsverfahren notwendig. Stattdessen können die Solarzellen im Rolle-zu-Rolle-Verfahren direkt auf ein Trägermaterial gedruckt werden.
Lassen sich auf fast jede Oberfläche aufbringen
Der vielleicht größte Vorteil von organischen Solarzellen liegt in ihrer Flexibilität als Kunststoffbeschichtung: Sie können nahezu auf jeder Oberfläche angebracht werden, sei es auf Solarplanen, Solarjalousien, gebogenen Solarpanels oder festen Strukturen wie Hausdächern und Gebäudefassaden.
Während bei konventionellen kristallinen Solarmodulen die Tragfähigkeit eines Daches oft die Wahl zwischen Dünnschicht- und Dickschichtmodulen bestimmt, spielt bei organischen Solarzellen die Statik kaum eine Rolle, da sie als Beschichtung verwendet werden. Dies erleichtert auch den Einsatz in mobilen Anwendungen erheblich.
Schlechterer Wirkungsgrad als bei herkömmlichen Solarzellen
Hinsichtlich des Wirkungsgrades bei der Erzeugung von Solarstrom können Photovoltaikanlagen mit organischen Solarzellen derzeit nicht mit herkömmlichen Zellen mithalten. Sie erreichen im Durchschnitt Wirkungsgrade von weniger als 10 Prozent. Auch wenn in einigen Fällen höhere Werte erzielt werden, übersteigen sie selten 18 Prozent.
Ein Vorteil der organischen Solarmodule liegt jedoch in ihrem ausgezeichneten Verhalten bei schwachem Licht. Sie absorbieren ein breites Lichtspektrum, wodurch der Leistungsverlust bei schlechten Lichtverhältnissen minimiert wird. Trotzdem erfordert der geringere Wirkungsgrad aktuell eine größere Fläche, um signifikante Strommengen zu generieren.
Ein weiterer Nachteil ist der ineffiziente Energietransport innerhalb des Materials der Solarzellen. Um dieses Problem zu beheben, untersuchen Wissenschaftlerinnen und Wissenschaftler die grundlegenden Transportmechanismen in organischen Solarzellen.
Wechselwirkung zwischen Licht und Materie im Fokus
Frank Ortmann, Professor für Theoretische Methoden in der Spektroskopie an der TUM, ist einer der Wissenschaftler, die sich intensiv mit den grundlegenden Transportprozessen von organischen Solarzellen auseinandersetzen. Gemeinsam mit einem Team aus Dresden untersucht er die Interaktion von Licht und Materie, wobei ein besonderes Augenmerk auf dem Verhalten von Exzitonen liegt. „Exzitonen sind so etwas wie der Kraftstoff der Sonne, den es optimal zu nutzen gilt“, erklärt Ortmann, der auch Mitglied im Exzellenzcluster e-conversion ist.
Wenn Licht in Form eines Photons auf das Material einer Solarzelle trifft, wird es absorbiert und in einem angeregten Zustand gespeichert, der als Exziton bezeichnet wird. Erst wenn diese Ladungen eine speziell entwickelte Grenzfläche erreichen, können sie als elektrische Energie genutzt werden. Ortmanns Forschungsteam hat herausgefunden, dass durch den Einsatz organischer Farbstoffe effiziente Transportwege für Exzitonen, sogenannte Exzitonen-Autobahnen, geschaffen werden können.
Farbstoffe sorgen für Turboeffekt
Die rasche Beförderung der Exzitonen zur Grenzfläche ist aufgrund ihrer kurzen Lebensdauer überaus wichtig: „Je schneller und gezielter der Transport abläuft, desto besser ist die Energieausbeute – und damit die Effizienz der Solarzelle“, so Ortmann.
Die organischen Farbstoffmoleküle, bekannt als chinoide Merocyanine, spielen hierbei eine Schlüsselrolle. Ihr chemischer Aufbau und ihre Fähigkeit, sichtbares Licht effektiv zu absorbieren, prädestinieren sie als aktive Schicht in organischen Solarzellen.
Energiepakete sprinten durch die Farbstoffmoleküle
Durch spektroskopische Messungen und Modellierungen konnten die Wissenschaftlerinnen und Wissenschaftler den Weg der Exzitonen durch die Farbstoffmoleküle genau verfolgen: „Mit Werten von 1,33 Elektronenvolt übertrifft unser Design die Werte in organischen Halbleitern bei weitem – die organischen Farbstoffmoleküle bilden sozusagen eine Autobahn“, betont Ortmann.
Diese innovativen Erkenntnisse könnten den Grundstein für einen optimierten Exzitonentransport in organischen Materialien legen und so zur Entwicklung effizienterer organischer Solarzellen oder Leuchtdioden beitragen.
Ein Beitrag von: