Geheimnis der Supraleitfähigkeit von Materialien lüftet sich
Dem Rätsel, warum nur einige Materialien supraleitende Fähigkeiten beim Stromtransport haben, sind Wissenschaftler einen Schritt näher gekommen. Die magnetische Ausrichtung der Moleküle scheint eine wesentliche Rolle zu spielen.
Supraleiter könnten eine scharfe Waffe im Kampf gegen den Klimawandel werden. Sie übertragen Strom über beliebige Entfernungen, ohne auch nur ein bisschen davon zu verlieren. Sie könnten Solarstrom aus den Wüsten der Erde und Windstrom von der afrikanischen Westküste dahin bringen, wo er gebraucht wird. Computer, die heute gigantische Mengen an kaum nutzbarer Wärme produzieren, blieben beim Einsatz von Supraleitern völlig cool, ebenso Motoren und Generatoren.
Was macht Materialien zu Supraleitern?
Doch die Sache hat einen Haken. Verlustfreier Stromtransport ist nur bei extrem tiefen Temperaturen möglich. Der Rekord liegt bei minus 135 Grad Celsius. Technisch nutzbare Supraleiter brauchen minus 196 Grad, das ist die Temperatur von flüssigem Stickstoff. Oft ist der Strombedarf fürs Kühlen fast so hoch wie das, was an Verlusten vermieden wird. Erst bei Raumtemperatur wären Supraleiter wirklich hilfreich. Das zu erreichen, ist Ziel von Forschern in aller Welt. Eine zielgerichtete Arbeit ist bisher aber auch deshalb unmöglich, weil niemand genau weiß, warum Elektronen manche Werkstoffe passieren, ohne einmal anzuecken.
Amerikanische und chinesische Wissenschaftler haben jetzt einen kleinen Schritt hin zum Verstehen der Gründe für Supraleitung gemacht. Sie entdeckten, das Chalkogenide und Pnictide überraschende Gemeinsamkeiten aufweisen. „Eigentlich sind sie völlig unterschiedlich“, sagt Qimiao Si, Physiker an der Rice University in Houston. „Und dennoch werden sie bei der gleichen Temperatur supraleitend.“ Chalkogenide sind chemische Verbindungen der Elemente Sauerstoff, Schwefel, Tellur und Selen mit Eisen. Pnictide hingegen sind Verbindungen von Eisen mit Elementen wie Arsen, Phosphor, Niob, Tantal und Wismut.
Entscheidend ist die magnetische Ausrichtung der Moleküle
Die Wissenschaftler fanden heraus, dass der Spin, also die magnetische Ausrichtung der Moleküle, eine wichtige Rolle beim Übergang der Materialien in die Supraleitfähigkeit spielt. Sie wirken aufeinander ein, und zwar besonders stark, wenn sie an einer Art Scheideweg angekommen sind: Zwischen völlig freier Bewegung und totaler Fixierung, so der Rice-Physiker.
Mit ihren Erkenntnissen haben die Wissenschaftler noch keine Erklärung für das Phänomen Supraleitung gefunden, aber einen Ansatz für weitere Forschung. Immerhin wissen sie jetzt, dass die magnetische Ausrichtung innerhalb des Materials eine wichtige Rolle spielt.
Ein Beitrag von: