Innovation in der Solartechnik 13.06.2023, 07:00 Uhr

Ladungstransport in organischen Solarzellen entschlüsselt

Die Studie eines interdisziplinären Teams zeigt, was Forschung leistet: Annahmen müssen sich erst einmal bewahrheiten. In diesem Fall kamen die Forschenden zu einem anderen Ergebnis und konnten erstmals nachvollziehen, wie der Ladungstransport in organischen Solarzellen funktioniert.

Solarzellen als Fassadenelemente

Organische Solarzellen lassen sich zum Beispiel in Häuserfassaden integrieren, sogar in Dächer von Autos.

Foto: panthermedia.net/df.schoenen

Solarzellen werden stetig weiterentwickelt. Dahinter steckt vor allem das Ziel, sie immer effizienter zu gestalten. Soll heißen: Im Idealfall liefern besonders kleine Zellen einen hohen Ertrag. Dann ist es zum Beispiel künftig möglich, mit weniger Solarmodulen auf einem Hausdach viel Strom zu erzeugen. Neben Windenergieanlagen sind es vor allem die Solaranlagen, die zum Gelingen der Energiewende maßgeblich ihren Beitrag leisten sollen. Aus diesem Grund beschäftigen sich zahlreiche Wissenschaftlerinnen und Wissenschaftler damit, Solarzellen zu untersuchen, zu verbessern und für die Marktreife vorzubereiten.

Photovoltaik: Forschungsprojekt zu organischen Solarzellen gestartet

Jüngst veröffentlichte die Technische Universität Chemnitz neueste Ergebnisse. Einem interdisziplinären Team ist es gelungen, den Ladungstransport in organischen Solarzellen zu verstehen. Beteiligt an dem Projekt waren unter der Leitung von Carsten Deibel, Professor am Institut der Physik der TU Chemnitz, Forschende der Professur Optik und Photonik kondensierter Materie der Technischen Universität Chemnitz, sowie weitere Institute. Das Forschungsprojekt konnte im Rahmen einer von der Deutschen Forschungsgemeinschaft geförderten Forschungsgruppe „Gedruckte & stabile organische Photovoltaik mit Nicht-Fullerenakzeptoren- POPULAR“ realisiert werden. Neben Universitäten in Deutschland sind auch Institute aus Großbritannien beteiligt. Gemeinsam wollen sie organische Solarzellen im massenproduktionstauglichen Druckverfahren herstellen, sie besser verstehen und stetig verbessern.

Die Zustandsdichte beschreibt die energetische Landschaft

Solarzellen lassen sich aus unterschiedlichen Materialien herstellen. Die Forschungsgruppe beschäftigt sich mit solchen aus neuartigen organischen Halbleitern, die sich mit herkömmlichen Druckverfahren oder auch mit dem effizienten thermischen Aufdampfverfahren herstellen lassen. Der Vorteil des interdisziplinären Teams: Know-how aus Chemie, Physik, Mathematik, der Drucktechnik und den Materialwissenschaften arbeiten gemeinsam an einem Projekt. „Organische Halbleiter sind sehr gute Lichtabsorber, sodass die lichtabsorbierende Schicht in Solarzellen um den Faktor 1.000 dünner ist als bei kristallinen Silizium-Solarzellen“, sagt Carsten Deibel. Allerdings seien organische Solarzellen ungeordnet.

Stellenangebote im Bereich Energie & Umwelt

Energie & Umwelt Jobs
VH-7 Medienküche GmbH-Firmenlogo
Bauingenieur / Umweltingenieur oder Ingenieur Umweltschutztechnik (M/w/d) VH-7 Medienküche GmbH
Stuttgart Zum Job 
Recogizer-Firmenlogo
Projektingenieur (m/w/d) KI-gestützte CO2-Reduktion Recogizer
Pfisterer Kontaktsysteme GmbH-Firmenlogo
High Voltage Testing Specialist (w/m/d) Pfisterer Kontaktsysteme GmbH
Winterbach Zum Job 
Berliner Stadtreinigungsbetriebe (BSR)-Firmenlogo
Projektleiterinnen / Projektleiter Energiewirtschaft (w/m/d) Berliner Stadtreinigungsbetriebe (BSR)
Netzgesellschaft Potsdam GmbH-Firmenlogo
Betriebsingenieur (m/w/d) Elektrotechnik/Energietechnik für die Niederspannung bzw. Hochspannung Netzgesellschaft Potsdam GmbH
Potsdam Zum Job 
Netzgesellschaft Potsdam GmbH-Firmenlogo
Ingenieur Strategische Netzplanung (m/w/d) für Strom, Datennetze, Infokabel, 450 MHz Netzgesellschaft Potsdam GmbH
Potsdam Zum Job 
Stuttgart Netze GmbH-Firmenlogo
(Junior) Ingenieur Quartiersentwicklung Anschlussservice (w/m/d) Stuttgart Netze GmbH
Stuttgart Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur Landschaftspflege und Umwelt (m/w/d) Die Autobahn GmbH des Bundes
München Zum Job 
Stadtwerke Schneverdingen-Neuenkirchen GmbH-Firmenlogo
Leitender Ingenieur (m/w/d) Netzbau und -betrieb Strom und Breitband Stadtwerke Schneverdingen-Neuenkirchen GmbH
Schneverdingen Zum Job 
UGS GmbH-Firmenlogo
Ingenieur Integritätsbewertung (m/w/d) UGS GmbH
Mittenwalde, deutschlandweiter Einsatz Zum Job 
ENGIE Deutschland GmbH-Firmenlogo
Projektmanager Vertrieb Energiedienstleistungen (m/w/d) ENGIE Deutschland GmbH
Frankfurt oder Stuttgart, bundesweit Zum Job 
Stadtwerke Südholstein GmbH-Firmenlogo
Ingenieur der Elektro- oder Energietechnik als Leiter Planung und Netzbetrieb Strom (m/w/d) Stadtwerke Südholstein GmbH
Pinneberg Zum Job 
Bau- und Liegenschaftsbetrieb NRW-Firmenlogo
Ingenieurinnen / Ingenieure bzw. Technikerinnen / Techniker oder Meisterinnen / Meister der Elektrotechnik (w/m/d) Bau- und Liegenschaftsbetrieb NRW
Münster Zum Job 
Stuttgart Netze GmbH-Firmenlogo
Ingenieur Baukoordination und Qualitätssicherung (w/m/d) Stuttgart Netze GmbH
Stuttgart Zum Job 
Stuttgart Netze GmbH-Firmenlogo
Ingenieur Projektierung Netze Strom / Gas (w/m/d) Stuttgart Netze GmbH
Stuttgart Zum Job 
DAkkS Deutsche Akkreditierungsstelle GmbH-Firmenlogo
Naturwissenschaftler/in oder Ingenieur/in als Experte für Immissionsschutz (w/m/d) DAkkS Deutsche Akkreditierungsstelle GmbH
Energie und Wasser Potsdam GmbH-Firmenlogo
Senior-Mehrsparten-Projektbearbeiter (m/w/d) Realisierung Energie und Wasser Potsdam GmbH
Potsdam Zum Job 
DAkkS Deutsche Akkreditierungsstelle GmbH-Firmenlogo
Ingenieur/in / Umweltwissenschaftler/in im Bereich Energie und Emissionshandel (w/m/d) DAkkS Deutsche Akkreditierungsstelle GmbH
naturenergie hochrhein AG-Firmenlogo
Projektentwickler (m/w/d) Technischer Vertrieb naturenergie hochrhein AG
Rheinfelden (Baden), Schallstadt, Donaueschingen Zum Job 
Berliner Stadtreinigungsbetriebe (BSR)-Firmenlogo
Betriebsingenieurin / Betriebsingenieur (w/m/d) Müllheizkraftwerk Berliner Stadtreinigungsbetriebe (BSR)

Was dahinter steckt, erläutert Deibel an einem anschaulichen Beispiel: „Für den Transport der Elektronen und Löcher, die in organischen Halbleitern durch das Sonnenlicht erzeugt werden, bedeutet das, dass sie sich nicht auf einer Autobahn, bewegen, sondern auf einer holprigen Straße mit vielen Fallen, die Elektronen oder Löcher einfangen und zu einem langsameren, aber nicht geringeren Stromfluss führen.“ Diese sogenannte energetische Landschaft lässt sich zum Beispiel mit der Zustandsdichte beschreiben.

Erstmals elektronische Defektlandschaft in Solarzellen dargestellt

Hinsichtlich des Ladungstransports an sich gab es für die Wissenschaftlerinnen und Wissenschaftler noch offene Fragen. Um diese zu klären, stellten die Forschenden der TU Chemnitz gemeinsam mit Forschenden der Universität Nürnberg-Erlangen, des Helmholtz-Instituts Erlangen-Nürnberg für Erneuerbare Energien und der Heliatek GmbH in Dresden verschiedene organische Solarzellen her. Im Rahmen der Untersuchungen konnten sie die sogenannte elektronische Defektlandschaft erstmals sichtbar machen.

Sie entsteht durch die Leerlaufspannung organischer Solarzellen. Gemeint ist die Spannung, die produziert wird, wenn kein Strom fließt. Sie ist zugleich das Maß dafür, wie viel Energie in den photogenerierten Elektronen und Löchern vorhanden ist. Gelungen ist den Forschenden dies bei empfindlichen Messungen. Dabei nutzten sie ein breites Spektrum von Lichtintensitäten und Temperaturen. Das Ergebnis verblüffte auch die Forschenden: Die Zustandsdichte einer organischen Solarzelle lässt sich durch ein Potenzgesetz beschreiben. Vorab waren sie davon ausgegangen, dass eine Gauß- oder Exponentialverteilung dafür geeignet sei.

Ergebnisse behindern nicht die Massentauglichkeit der Solarzellen

„Das bedeutet, dass im Gegensatz zu älteren Modellen kleinere Leerlaufspannungen in den Solarzellen in einem energetischen Bereich liegen, in dem es mehr Fallen gibt. Erfreulicherweise ist unter Arbeitsbedingungen organischer Solarzellen bei Raumtemperatur unter Sonnenlichteinstrahlung die Leerlaufspannung höher und die Zustandsdichte enthält dort weniger Fallen“, erklärt Maria Saladina, wissenschaftliche Mitarbeiterin von Carsten Deibel an der TU Chemnitz. Die Ergebnisse der Forschungsgruppe sind erst vor wenigen Tagen in der Fachzeitschrift „Physical Review Letters“ veröffentlicht worden.

Diese neuen Erkenntnisse haben nach Einschätzung der Wissenschaftlerinnen und Wissenschaftler lediglich einen Einfluss auf die theoretische Beschreibung organischer Solarzellen, nicht jedoch auf die Herstellung mittels Druck- oder Aufdampfverfahren. Damit seien organische Halbleiter ebenso tauglich für die Massenproduktion wie andere Materialien. Schließlich habe man durch die Experimente erst einmal bewiesen, dass die Zustandsdichte in organischen Solarzellen komplexer ist als bisher gedacht.

Mehr zum Thema Solarzellen:

 

Ein Beitrag von:

  • Nina Draese

    Nina Draese hat unter anderem für die dpa gearbeitet, die Presseabteilung von BMW, für die Autozeitung und den MAV-Verlag. Sie ist selbstständige Journalistin und gehört zum Team von Content Qualitäten. Ihre Themen: Automobil, Energie, Klima, KI, Technik, Umwelt.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.