Leistungsfähigstes Supraleiterkabel der Welt entwickelt
Ein Forschungsteam der University at Buffalo (UB) hat den weltweit leistungsfähigsten Hochtemperatur-Supraleiterdraht (HTS) entwickelt. Dieser innovative Draht, der Ströme leiten kann, die normalerweise nur mit viel dickeren Drähten möglich sind, könnte eine entscheidende Rolle in unserer Energiezukunft spielen.
Der von Amit Goyal und seinem Team entwickelte Draht kann bei Temperaturen von -268 bis -196 Grad Celsius eingesetzt werden. Diese Temperaturbereiche sind immer noch extrem kalt, aber wärmer als der absolute Nullpunkt, bei dem herkömmliche Supraleiter funktionieren. Diese Fähigkeit, Strom fast ohne Widerstand zu leiten, könnte das Stromnetz revolutionieren und die Effizienz in vielen Bereichen verbessern.
Inhaltsverzeichnis
Durchbruch in der Supraleitertechnologie?
Das Forschungsteam kombinierte zwei fortschrittliche Technologien: die ionenstrahlunterstützte Abscheidung (IBAD) und die Nanosäulen-Defekttechnologie. Die IBAD-Technologie erzeugt eine strukturierte Schicht, die als Basis für das supraleitende Material dient. Die Nanosäulen-Defekte werden durch gleichzeitige Phasentrennung und dehnungsgesteuerte Selbstassemblierung eingebracht und ermöglichen eine erhöhte Leitfähigkeit.
Die Forschenden verwendeten ein System zur gepulsten Laserabscheidung, um einen HTS-Film auf einem Draht aus Seltenerd-Barium-Kupferoxid (REBCO) herzustellen. Diese Methode ermöglicht eine genaue Kontrolle der Materialeigenschaften und eine effiziente Herstellung des supraleitenden Drahtes.
Herausragende Leistung bei extremen Bedingungen
Das neu entwickelte HTS-Kabel erreicht eine rekordverdächtige kritische Stromdichte und Pinning-Kraft für alle Magnetfelder und Temperaturen von 5 Kelvin bis 77 Kelvin (- 268,15 °C bis - 196,15 °C). Bei - 268,95 °C kann der Draht eine Stromstärke von 190 Millionen Ampere pro Quadratzentimeter ohne äußeres Magnetfeld leiten. Bei einem Magnetfeld von 7 Tesla beträgt der Stromfluss 90 Millionen Ampere pro Quadratzentimeter.
Bei einer Temperatur von -253,15 °C, die für kommerzielle Fusionsreaktoren angestrebt wird, erreicht der Draht eine Stromstärke von 150 Millionen Ampere pro Quadratzentimeter ohne Magnetfeld und 60 Millionen Ampere pro Quadratzentimeter bei 7 Tesla. Diese Leistung ist besonders bemerkenswert, da der HTS-Film nur 0,2 Mikrometer dick ist, aber dennoch Ströme leiten kann, die normalerweise nur von viel dickeren Drähten erreicht werden.
„Diese Ergebnisse zeigen, dass noch erhebliche Leistungssteigerungen möglich sind und damit auch die damit verbundene Kostenreduzierung, die in optimierten, kommerziellen HTS-Drähten realisiert werden könnte“, sagt Goyal.
So wurde der Draht hergestellt
Das HTS-Drahtsegment wurde mit einer speziellen Technik namens Ionenstrahlunterstützte Abscheidung (IBAD) auf Magnesiumoxid-Substraten und unter Nutzung von Nanotechnologie hergestellt. Diese Technik ermöglicht es, winzige Säulen in den Supraleiter einzubauen, die nicht leitend oder isolierend sind. Diese winzigen Defekte helfen dabei, die supraleitenden Ströme besser zu kontrollieren und zu erhöhen.
„Die hohe kritische Stromdichte wurde durch eine Kombination von Pinning-Effekten durch die Dotierung mit seltenen Erden, Sauerstoff-Punktdefekten und isolierenden Bariumzirkonat-Nanosäulen und deren Morphologie ermöglicht“, sagt Goyal.
„Der HTS-Film wurde mit einem fortschrittlichen gepulsten Laserdepositionssystem unter sorgfältiger Kontrolle der Depositionsparameter hergestellt“, fügt Rohit Kumar hinzu, Postdoktorand im UB-Labor für heteroepitaktisches Wachstum von Funktionsmaterialien und -geräten, das Goyal leitet.
Bei dieser Methode wird ein Laserstrahl auf das Ausgangsmaterial geschossen, das sich dann als dünner Film auf einem Substrat ablagert.
Vielfältige Anwendungsmöglichkeiten
Die Technologie der HTS-Drähte hat das Potenzial, eine Vielzahl von Anwendungen zu revolutionieren. Dazu gehören die verlustfreie Energieübertragung, die Verbesserung der Leistung von Offshore-Windparks, supraleitende magnetische Energiespeichersysteme und andere Energieinfrastrukturen. Darüber hinaus finden HTS-Drähte Anwendung in Kernfusionsreaktoren und in fortschrittlichen Bildgebungs- und Spektroskopietechniken.
Die Herstellungskosten von HTS-Drähten sind zwar immer noch hoch, aber die Fortschritte, die durch Goyal und sein Team erzielt wurden, könnten dazu beitragen, diese Kosten zu senken und die Technologie für eine breitere kommerzielle Nutzung zugänglich zu machen.
Ein Beitrag von: