Hochtemperatur-Supraleiterdraht 08.08.2024, 11:14 Uhr

Leistungsfähigstes Supraleiterkabel der Welt entwickelt

Ein Forschungsteam der University at Buffalo (UB) hat den weltweit leistungsfähigsten Hochtemperatur-Supraleiterdraht (HTS) entwickelt. Dieser innovative Draht, der Ströme leiten kann, die normalerweise nur mit viel dickeren Drähten möglich sind, könnte eine entscheidende Rolle in unserer Energiezukunft spielen.

Offshore-Windparks

Die neu entwickelten HTS-Drähte können eine Vielzahl an Technologien verbessern - so auch Offshore-Windparks oder energiefreie Stromübertragung.

Foto: PantherMedia / balipadma

Der von Amit Goyal und seinem Team entwickelte Draht kann bei Temperaturen von -268 bis -196 Grad Celsius eingesetzt werden. Diese Temperaturbereiche sind immer noch extrem kalt, aber wärmer als der absolute Nullpunkt, bei dem herkömmliche Supraleiter funktionieren. Diese Fähigkeit, Strom fast ohne Widerstand zu leiten, könnte das Stromnetz revolutionieren und die Effizienz in vielen Bereichen verbessern.

Durchbruch in der Supraleitertechnologie?

Das Forschungsteam kombinierte zwei fortschrittliche Technologien: die ionenstrahlunterstützte Abscheidung (IBAD) und die Nanosäulen-Defekttechnologie. Die IBAD-Technologie erzeugt eine strukturierte Schicht, die als Basis für das supraleitende Material dient. Die Nanosäulen-Defekte werden durch gleichzeitige Phasentrennung und dehnungsgesteuerte Selbstassemblierung eingebracht und ermöglichen eine erhöhte Leitfähigkeit.

Die Forschenden verwendeten ein System zur gepulsten Laserabscheidung, um einen HTS-Film auf einem Draht aus Seltenerd-Barium-Kupferoxid (REBCO) herzustellen. Diese Methode ermöglicht eine genaue Kontrolle der Materialeigenschaften und eine effiziente Herstellung des supraleitenden Drahtes.

Stellenangebote im Bereich Energie & Umwelt

Energie & Umwelt Jobs
Bayerisches Staatsministerium für Wohnen, Bau und Verkehr-Firmenlogo
Traineeprogramm - Bachelor Fachrichtung Maschinenbau / Energie- und Gebäudetechnik (m/w/d) Bayerisches Staatsministerium für Wohnen, Bau und Verkehr
bayernweit Zum Job 
Bayerisches Staatsministerium für Wohnen, Bau und Verkehr-Firmenlogo
Traineeprogramm - Bachelor Fachrichtung Maschinenbau / Energie- und Gebäudetechnik (m/w/d) Bayerisches Staatsministerium für Wohnen, Bau und Verkehr
Stadtwerke Esslingen am Neckar GmbH & Co. KG-Firmenlogo
Fachkraft für Nah- und Fernwärme-Hausanschlüsse (m/w/d) Stadtwerke Esslingen am Neckar GmbH & Co. KG
Esslingen am Neckar Zum Job 
Landeshauptstadt Düsseldorf-Firmenlogo
Leitung des städtischen Krematoriums für das Garten-, Friedhofs- und Forstamt Landeshauptstadt Düsseldorf
Düsseldorf Zum Job 
THOST Projektmanagement GmbH-Firmenlogo
Wirtschaftsjurist*in / Ingenieur*in (m/w/d) für Contract & Claimsmanagement in Projektender Energiewende THOST Projektmanagement GmbH
Stuttgart, Mannheim Zum Job 
RES Deutschland GmbH-Firmenlogo
Head of Engineering / Leitung technische Planung Wind- & Solarparks (m/w/d) RES Deutschland GmbH
Vörstetten Zum Job 
MEWA Textil-Service SE & Co. Management OHG-Firmenlogo
Projektingenieur (m/w/d) Elektrotechnik MEWA Textil-Service SE & Co. Management OHG
Wiesbaden Zum Job 
KÜBLER GmbH-Firmenlogo
Techniker / Ingenieur / Fachplaner / TGA (m/w/d) Heizungstechnik und Elektro KÜBLER GmbH
Ludwigshafen Zum Job 
Stadtwerke München GmbH-Firmenlogo
Vertragsmanager*in Großprojekte Mobilität (m/w/d) Stadtwerke München GmbH
München Zum Job 
fbw | Fernwärmegesellschaft Baden-Württemberg mbH-Firmenlogo
Elektroingenieur (m/w/d) (Ingenieur für Elektrotechnik, Energie- oder Versorgungstechnik o. ä.) fbw | Fernwärmegesellschaft Baden-Württemberg mbH
Stuttgart Zum Job 
Veltum GmbH-Firmenlogo
Planungsingenieur:in für Versorgungstechnik Heizung, Lüftung, Sanitär Veltum GmbH
Waldeck Zum Job 
Stadtwerke Potsdam GmbH-Firmenlogo
Ingenieur/Techniker/Meister (m/w/d) Elektrische Energietechnik Netzausbau Strom Stadtwerke Potsdam GmbH
Potsdam Zum Job 
THOST Projektmanagement GmbH-Firmenlogo
Ingenieur*in (m/w/d) im Projektmanagement Bereich Energietechnik THOST Projektmanagement GmbH
verschiedene Standorte Zum Job 
ESWE Versorgungs AG-Firmenlogo
Asset Management & Transformationsplanung Fernwärmeversorgung (m/w/d) ESWE Versorgungs AG
Wiesbaden Zum Job 
naturenergie hochrhein AG-Firmenlogo
Projektentwickler kommunale Energielösungen (m/w/d) naturenergie hochrhein AG
Rheinfelden (Baden) Zum Job 
Stadtwerke Augsburg Energie GmbH-Firmenlogo
TGA-Planer*in / Ingenieur*in / Techniker*in (m/w/d) technische Gebäudeausrüstung Stadtwerke Augsburg Energie GmbH
Augsburg Zum Job 
Berliner Stadtreinigungsbetriebe (BSR)-Firmenlogo
Abteilungsleitung Deponien und Altablagerungen (w/m/d) Berliner Stadtreinigungsbetriebe (BSR)
Kromberg & Schubert Automotive GmbH & Co. KG-Firmenlogo
Ingenieur / Materialwissenschaften (m/w/d) Kromberg & Schubert Automotive GmbH & Co. KG
Abensberg Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur (w/m/d) für Geotechnik, Abfall, Altlasten und Georisiken Die Autobahn GmbH des Bundes
Nürnberg Zum Job 
Hamburger Hochbahn AG-Firmenlogo
Senior - Projektleiter Elektrotechnik Betriebsanlagen (w/m/d) Hamburger Hochbahn AG
Hamburg Zum Job 

Herausragende Leistung bei extremen Bedingungen

Das neu entwickelte HTS-Kabel erreicht eine rekordverdächtige kritische Stromdichte und Pinning-Kraft für alle Magnetfelder und Temperaturen von 5 Kelvin bis 77 Kelvin (- 268,15 °C bis - 196,15 °C). Bei - 268,95 °C kann der Draht eine Stromstärke von 190 Millionen Ampere pro Quadratzentimeter ohne äußeres Magnetfeld leiten. Bei einem Magnetfeld von 7 Tesla beträgt der Stromfluss 90 Millionen Ampere pro Quadratzentimeter.

Bei einer Temperatur von -253,15 °C, die für kommerzielle Fusionsreaktoren angestrebt wird, erreicht der Draht eine Stromstärke von 150 Millionen Ampere pro Quadratzentimeter ohne Magnetfeld und 60 Millionen Ampere pro Quadratzentimeter bei 7 Tesla. Diese Leistung ist besonders bemerkenswert, da der HTS-Film nur 0,2 Mikrometer dick ist, aber dennoch Ströme leiten kann, die normalerweise nur von viel dickeren Drähten erreicht werden.

„Diese Ergebnisse zeigen, dass noch erhebliche Leistungssteigerungen möglich sind und damit auch die damit verbundene Kostenreduzierung, die in optimierten, kommerziellen HTS-Drähten realisiert werden könnte“, sagt Goyal.

Pulsed Laser Deposition

Zur Herstellung der HTS-Drähte wurde die gepulste Laserabscheidung verwendet, bei der ein Laserstrahl ein Material abträgt, das als Film auf ein Substrat aufgebracht wird.

Foto: University at Buffalo

So wurde der Draht hergestellt

Das HTS-Drahtsegment wurde mit einer speziellen Technik namens Ionenstrahlunterstützte Abscheidung (IBAD) auf Magnesiumoxid-Substraten und unter Nutzung von Nanotechnologie hergestellt. Diese Technik ermöglicht es, winzige Säulen in den Supraleiter einzubauen, die nicht leitend oder isolierend sind. Diese winzigen Defekte helfen dabei, die supraleitenden Ströme besser zu kontrollieren und zu erhöhen.

„Die hohe kritische Stromdichte wurde durch eine Kombination von Pinning-Effekten durch die Dotierung mit seltenen Erden, Sauerstoff-Punktdefekten und isolierenden Bariumzirkonat-Nanosäulen und deren Morphologie ermöglicht“, sagt Goyal.

„Der HTS-Film wurde mit einem fortschrittlichen gepulsten Laserdepositionssystem unter sorgfältiger Kontrolle der Depositionsparameter hergestellt“, fügt Rohit Kumar hinzu, Postdoktorand im UB-Labor für heteroepitaktisches Wachstum von Funktionsmaterialien und -geräten, das Goyal leitet.

Bei dieser Methode wird ein Laserstrahl auf das Ausgangsmaterial geschossen, das sich dann als dünner Film auf einem Substrat ablagert.

Vielfältige Anwendungsmöglichkeiten

Die Technologie der HTS-Drähte hat das Potenzial, eine Vielzahl von Anwendungen zu revolutionieren. Dazu gehören die verlustfreie Energieübertragung, die Verbesserung der Leistung von Offshore-Windparks, supraleitende magnetische Energiespeichersysteme und andere Energieinfrastrukturen. Darüber hinaus finden HTS-Drähte Anwendung in Kernfusionsreaktoren und in fortschrittlichen Bildgebungs- und Spektroskopietechniken.

Die Herstellungskosten von HTS-Drähten sind zwar immer noch hoch, aber die Fortschritte, die durch Goyal und sein Team erzielt wurden, könnten dazu beitragen, diese Kosten zu senken und die Technologie für eine breitere kommerzielle Nutzung zugänglich zu machen.

Hier geht es zur Originalmeldung.

Ein Beitrag von:

  • Dominik Hochwarth

    Redakteur beim VDI Verlag. Nach dem Studium absolvierte er eine Ausbildung zum Online-Redakteur, es folgten ein Volontariat und jeweils 10 Jahre als Webtexter für eine Internetagentur und einen Onlineshop. Seit September 2022 schreibt er für ingenieur.de.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.