Energiewende 07.10.2022, 09:12 Uhr

Mechanische Energiespeicher: Wie Isaac Newton Windkraft und Photovoltaik fit für die Energiewende macht

Die Energiewende kann nur gelingen, wenn wir ausreichend Speicherkapazitäten aufbauen. Eine Möglichkeit sind mechanische Energiespeicher, die auf den Lehren von Isaac Newton aufbauen. Der Strom aus Photovoltaik oder Windenergie wird hierbei genutzt, um Wasser auf ein höheres Niveau zu pumpen, eine Spule anzutreiben oder Luft in einen abgeschlossenen Hohlraum zu pressen und somit in eine andere Energieform umzuwandeln.

Staumauer Lac d’Emosson

Staumauer des Lac d’Emosson im Westen des Kanton Wallis in der Schweiz.

Foto: Panthemedia.net/MoJoLo

Da Wind und Sonne nicht gleichmäßig Strom liefern, braucht es große Energiespeicher, damit es mit der Energiewende funktioniert und wir bald weitestgehend unabhängig von Gas und Öl sind. Neben chemischen, thermischen oder elektrischen Speichern sind es insbesondere mechanische Energiespeicher, die dabei helfen können. Sie fußen auf der klassischen Newton’schen Mechanik. Die Speicherung von Energie erfolgt in kinetischer oder potenzieller Form sowie als Druckenergie. Klassische Anwendungen sind Pumpspeicherwerke, Druckluftspeicher oder Schwungmassenspeicher.

Was ist ein mechanischer Energiespeicher?

Mechanische Energiespeicher bedienen sich bei den physikalischen Betrachtungen Isaac Newtons hinsichtlich Gravitation und Bewegungszustand von Körpern. Ihr Grundstein wurde somit vor rund 300 Jahren gelegt. Der Strom aus Photovoltaik oder Windenergie wird hierbei genutzt, um Wasser auf ein höheres Niveau zu pumpen, eine Spule anzutreiben oder Luft in einen abgeschlossenen Hohlraum zu pressen und somit Druckluft herzustellen. Die Speichertechnologien finden sich in Pumpspeicherkraftwerken, Druckluftspeichern und Schwungrad- oder Schwungmassenspeichern.

Mechanische Energiespeicher #1: Pumpspeicherkraftwerke

Um elektrische Energie in großem Maßstab zu speichern, eignen sich insbesondere Pumpspeicherkraftwerke (PSW). Die Technik dahinter ist bereits über 100 Jahre alt, wurde also bereit weit vor der Energiewende entwickelt. Aber gerade für die Speicherung von erneuerbaren Energien eignen sie sich perfekt.

Ein Pumpspeicherkraftwerk besteht zumindest aus einem Speicherbecken (Oberwasserbecken) und einem Tiefbecken (Unterwasserbecken). Beide Becken sind über Druckrohrleitungen miteinander verbunden. Fließt das Wasser von oben nach unten, produziert ein Generator Strom. In Zeiten von Stromüberschuss, wird das Wasser von unten nach oben gepumpt.

Stellenangebote im Bereich Energie & Umwelt

Energie & Umwelt Jobs
Die Autobahn GmbH des Bundes-Firmenlogo
Servicetechniker (w/m/d) Die Autobahn GmbH des Bundes
München Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Techniker in der Tunnelüberwachung und Verkehrssteuerung (w/m/d) Die Autobahn GmbH des Bundes
München Zum Job 
Hochschule Reutlingen-Firmenlogo
Akademische:r Mitarbeiter:in "Wärmewende" (m/w/x) Hochschule Reutlingen
Reutlingen Zum Job 
IPH Institut "Prüffeld für elektrische Hochleistungstechnik" GmbH-Firmenlogo
Ingenieur Elektrotechnik LV (m/w/d) IPH Institut "Prüffeld für elektrische Hochleistungstechnik" GmbH
Berlin-Marzahn Zum Job 
Mall GmbH-Firmenlogo
Ingenieur Wasserwirtschaft / Umweltwissenschaft (m/w/d) Mall GmbH
Donaueschingen Zum Job 
Stadtwerke Bad Vilbel GmbH-Firmenlogo
Regulierungsmanager in Teilzeit/Vollzeit (m/w/d) Stadtwerke Bad Vilbel GmbH
Bad Vilbel Zum Job 
VGH Versicherungen-Firmenlogo
Energiemanager (m/w/d) VGH Versicherungen
Hannover Zum Job 
Landeswohlfahrtsverband Hessen (LWV)-Firmenlogo
Dipl.-Ingenieurin / Dipl.-Ingenieur (m/w/d) oder Bachelor / Master (m/w/d) Fachrichtung Architektur oder Bauingenieurwesen Landeswohlfahrtsverband Hessen (LWV)
Hochschule Esslingen - University of Applied Sciences-Firmenlogo
Professor:in (W2) für das Lehrgebiet "Automatisierungssysteme in Gebäude-, Energie- und Umwelttechnik" Hochschule Esslingen - University of Applied Sciences
Esslingen am Neckar Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Teamleitung Verkehrssicherheit (m/w/d) Die Autobahn GmbH des Bundes
Hannover Zum Job 
Broadcast Solutions GmbH-Firmenlogo
Elektroingenieur* in Vollzeit (m/w/d) Broadcast Solutions GmbH
Stadtreinigung Hamburg Anstalt des öffentlichen Rechts-Firmenlogo
Sachgebietsleitung (m/w/d) Deponietechnik Stadtreinigung Hamburg Anstalt des öffentlichen Rechts
Hamburg Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur Immissionsschutz (m/w/d) Die Autobahn GmbH des Bundes
Hohen Neuendorf Zum Job 
Regierungspräsidium Freiburg-Firmenlogo
Bachelor / Diplom (FH) Landespflege, Landschaftsplanung oder vergleichbar (planungsorientierte Ausrichtung) Regierungspräsidium Freiburg
Bad Säckingen, Donaueschingen, Singen Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Abfallexperte Bau/Stoffstrommanager (m/w/d) Die Autobahn GmbH des Bundes
Stuttgart Zum Job 
Bundesamt für Strahlenschutz-Firmenlogo
Ingenieur*in (m/w/d) Liegenschafts- und Gebäudemanagement Bundesamt für Strahlenschutz
Oberschleißheim (bei München), Salzgitter, Berlin Zum Job 
HAWK Hochschule für angewandte Wissenschaft und Kunst-Firmenlogo
Gebäudeenergieberater*in HAWK Hochschule für angewandte Wissenschaft und Kunst
Hildesheim Zum Job 
ONTRAS Gastransport GmbH-Firmenlogo
Ingenieur Maschinen- und Anlagentechnik (m/w/d) ONTRAS Gastransport GmbH
Leipzig Zum Job 
MAX-DELBRÜCK-CENTRUM FÜR MOLEKULARE MEDIZIN-Firmenlogo
Ingenieur*in (Gebäude- u. Energietechnik) für das Helmholtz Kompetenznetzwerk Klimagerecht Bauen MAX-DELBRÜCK-CENTRUM FÜR MOLEKULARE MEDIZIN
Technische Werke Emmerich am Rhein GmbH-Firmenlogo
Projektingenieur*in Kanalplanung / -bau Technische Werke Emmerich am Rhein GmbH
Emmerich am Rhein Zum Job 

Der große Vorteil von Pumpwasserwerken: Sie benötigen zum Anfahren keine Energiezufuhr von außen. In Fachkreisen wird das als Schwarzstart bezeichnet. Sie können daher nach einem großflächigen Blackout zum Wiederaufbau des Netzbetriebes beitragen. Der Nachteil: Es braucht mehr Energie, das Wasser nach oben zu pumpen als beim umgekehrten Weg Strom produziert wird. Der Wirkungsgrad ist entsprechend niedrig, er liegt bei 75 bis 80 Prozent.

Dennoch gelten Pumpspeicher als eines der Puzzleteile, um die Speicherprobleme der Energiewende in den Griff zu bekommen. Allerdings gibt es in Deutschland nur begrenzte Möglichkeiten, neue Pumpspeicherkraftwerke zu errichten. Günstigere topographische Verhältnisse gib es in Norwegen, Österreich oder der Schweiz. Dort wird teilweise mehr Energie mit Hilfe der Wasserkraft erzeugt als durch Gaskraftwerke oder andere thermische Anlagen.

Unterirdische Pumpspeicherkraftwerke als Lösung?

Oberirdische Pumpwasserkraftwerke bedeuten immer einen enormen Eingriff in die Natur. Außerdem können sie nur in bergigen Gebieten errichtet werden. Als Alternative bieten sich unterirdische Pumpspeicherkraftwerke an. Diese nutzen zum Beispiel stillgelegte oder auch noch aktive Bergwerkstollen als Unterbecken, es braucht dann nur noch ein Oberbecken angelegt werden.

„Für die Energiewende sind solche Pumpspeicherwerke unbedingt notwendig. Da sie zurzeit aber noch nicht wirtschaftlich errichtet werden können, ist die Politik hier gefordert, die Umsetzung voranzutreiben.“ Prof. Dr.-Ing. Oliver Langefeld, Institut für Bergbau der Technischen Universität (TU) Clausthal, Clausthal-Zellerfeld

Interessant sind solche Anlagen überall dort, wo Bergbau betrieben wurde oder noch wird, wie zum Beispiel im Ruhrgebiet oder in der Lausitz. Allerdings sind nicht alle Standorte gleichermaßen gut geeignet. Verschiedene Studien haben außerdem gezeigt, dass solche Pumpspeicherkraftwerke unter Tage sich derzeit nicht wirtschaftlich errichten lassen.

Weitere Wasserkraftwerke:

Neben Pumpspeicherkraftwerken gibt es noch weitere Möglichkeiten, mit Wasser elektrischen Strom zu gewinnen:

  • Laufwasserkraftwerke – hier wird ein Fluss gestaut und mit dem abfließenden Wasser Energie gewonnen
  • Gezeitenkraftwerke – sie nutzen die Energie aus dem ständigen Wechsel von Ebbe und Flut
  • Strömungskraftwerke – sie nutzen die kinetische Energie von Fließgewässern
  • Meeresströmungswerke – sie nutzen die kinetische Energie von Meeresströmungen
  • Wellenkraftwerke – sie nutzen die Energie aus den Meereswellen
  • Gletscherkraftwerke – sie nutzen des Schmelzwassers eines Gletschersees
Interessant zu wissen:
Norwegen ist Deutschlands größte Batterie: Über das Seekabel NordLink sind die Stromnetze Norwegens und Deutschlands miteinander verbunden. Über das Kabel soll überschüssiger Strom aus Windenergie nach Norwegen übertragen werden. Im Gegenzug kann bei Bedarf Strom aus norwegischen Wasserkraftwerken nach Deutschland übertragen werden. Mehr darüber lesen.

Mechanische Energiespeicher #2: Druckluftspeicher

In einem Druckluftspeicher wird Energie in Form von komprimierter Luft gespeichert. Das geschieht in Zeiten, in denen mehr Strom als benötigt produziert wird. Bei Strombedarf wird mit der Druckluft in einer Gasturbine Strom produziert. Es handelt sich somit um Hybridanlagen zur Bereitstellung von Strom zu Zeiten der Spitzenlast. Gas wird zur Erwärmung der expandierenden Luft, um das Vereisen der Turbinen zu vermeiden.

Die Speicherung der Druckluft erfolgt in aller Regel in unterirdischen Kavernen. Denkbar sind aber auch Drucklufttanks oder Unterwasser-Ballone. Ganz egal, wo die Druckluft gespeichert wird, die eingeschlossene mechanische Energie lässt sich in Strom umwandeln und ins Stromnetz einspeisen. Druckluftspeicher lassen sich nur an Standorten bauen, die geeignete geologische Bedingungen aufweisen.

Vorteil von Druckluftspeichern: Sie haben das Potenzial, Stromangebot und -nachfrage besser aufeinander abzustimmen. Anders als Pumpspeicherkraftwerke braucht zudem kein gravierender Eingriff in die Natur vorgenommen zu werden. Die Energie aus dem Speicher ist zudem schnell verfügbar, es braucht keine zusätzliche Energie von außen, um die Anlage zu starten. Sie ist somit schwarzstartfähig.

Interessant zu wissen:
Bislang gibt es weltweit nur weniger Druckluftspeicher, einen in den USA, einen in Huntdorf in Deutschland. Mit besserem Wirkungsgrad gibt es zudem einen in China, weitere sind geplant. Obwohl es bislang nur wenige gibt, gelten dennoch als Zukunftsoption, insbesondere bei weiterem Ausbau der Windenergie. Sie können Schwankungen in der Leistung bei Windrädern ausgleichen und eine der größten Nachteile des Windes beheben. Es braucht jedoch einen geeigneten Standort, die oben bereits erwähnte Kaverne. Praktischerweise sind in Deutschland die Gebiete mit den meisten Salzstockvorkommen auch zugleich die mit dem meisten Wind: Die Küsten der Ost- und insbesondere der Nordsee.

Erfahren Sie mehr zum Thema Druckluftspeicher

Mechanische Energiespeicher #3: Schwungradspeicher

Bereits im Mittelalter war das Schwungrad bekannt, nun soll es beim Speicherproblem von Windenergie helfen. Das Prinzip ist einfach: Mit Hilfe eines Motors wird ein Rad in Schwung versetzt. Diese Rotationsenergie lässt sich bei Bedarf durch Abbremsen mit Hilfe eines Generators wieder in Strom verwandeln. Damit die erzeugte elektrische Spannung zur Netzfrequenz passt, braucht es zusätzlich noch einen sogenannten Frequenzumrichter.

Je größer die Masse und je schneller diese sich dreht, desto mehr Energie lässt sich speichern. Dementgegen stehen Reibungskräfte, die das Schwungrad zum Stehen bringen, sofern nicht ständig neue Energie zugeführt werden. Durch Betrieb der Schwungräder in einem Vakuum lässt sich die Reibung zwar reduzieren, insgesamt betrachtet eignen sich Schwungradspeicher jedoch eher für das kurzzeitige Abfedern von Lastspitzen.

Die Geschwindigkeit der rotierenden Masse trägt ganz besonders zur Energiespeicherung bei. Die spezifische Speicherkapazität potenziert sich, je schneller sich das Schwungrad dreht. Im Allgemeinen liegt die Drehzahl zwischen 20.000 und 60.000 Umdrehungen in der Minute, sie kann aber auch bis zu 100.000 Umdrehungen in der Minute erreichen. Die Steigerung der Drehzahl hat jedoch seine Grenzen, sie ergibt es sich durch die Zugfestigkeit und der Dichte des verwendeten Materials.

Interessant zu wissen:
Sind langsam drehende Schwungräder meist aus Metall, werden die schnelleren Räder daher meist aus zugfesteren Materialien hergestellt. Zum Beispiel aus glasfaser- oder kohlenstofffaserverstärkten Kunststoffen.

Hier erfahren Sie mehr über Schwungradspeicher

Ein Beitrag von:

  • Dominik Hochwarth

    Redakteur beim VDI Verlag. Nach dem Studium absolvierte er eine Ausbildung zum Online-Redakteur, es folgten ein Volontariat und jeweils 10 Jahre als Webtexter für eine Internetagentur und einen Onlineshop. Seit September 2022 schreibt er für ingenieur.de.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.