Windenergie neu durchdacht 22.08.2024, 07:00 Uhr

Mit diesem neuen Modell lassen sich Windparks optimieren

Einem Forscherteam ist es gelungen, eine rund 100 Jahre alte Formel zu verbessern. Dank ihrer neuen Theorie sind nun präzisere Vorhersagen in punkto Leistung und Ertrag möglich. Das könnte auch positive Auswirkungen auf den Entwurf von Rotorblättern haben, was die Effizienz von Windparks steigern könnte.

Offshore-Windanlage mit Animation der Strömung

Das neu entwickelte Modell stellt den Luftstrom um Rotoren selbst unter extremen Bedingungen genau dar.

Foto: MIT – Mit freundlicher Genehmigung der Forschenden

Forschende des MIT haben eine Theorie entwickelt, die den Entwurf und Betrieb von Windparks grundlegend verändern könnte. Mit dem neu konzipierten Modell zur Rotor-Aerodynamik ließe sich die Gestaltung von Turbinenblättern und die Steuerung von Windkraftanlagen erheblich verbessern. Bislang basierte die Konstruktion von Propellern und Windturbinen auf über hundert Jahre alten mathematischen Prinzipien.

Wie sich allerdings herausstellte, erwiesen sich diese Formeln in vielen Situationen als unzureichend. Deshalb fügten die Forschenden empirisch ermittelte Ad-hoc-Korrekturfaktoren hinzu. Das innovative Modell der MIT-Ingenieure stellt nun präzise die Luftströmung um die Rotoren dar – sogar selbst unter extremen Bedingungen wie hohen Kräften, Geschwindigkeiten oder spezifischen Neigungswinkeln. Diese Erkenntnisse könnten nicht nur die Rotorgestaltung revolutionieren, sondern auch die Planung und den Betrieb von Windparks optimieren.

Sonne und Wind konkurrenzlos günstig

Die Forschungsergebnisse stammen von einem Team um Michael Howland, Assistant Professor am MIT. „Mit dieser Theorie können die Kräfte, Strömungsgeschwindigkeiten und die Leistung eines Rotors bestimmt werden, unabhängig davon, ob der Rotor Energie aus dem Luftstrom gewinnt, wie bei einer Windturbine, oder ob er der Strömung Energie zuführt, wie bei einem Schiffs- oder Flugzeugpropeller“, erläutert Howland. Das mathematische Modell eröffnet unmittelbare Anwendungsmöglichkeiten, insbesondere für Betreiber von Windparks. Es ermöglicht eine effiziente Optimierung verschiedener Parameter in Echtzeit – zum Beispiel Turbinenausrichtung, Rotordrehzahl und Blattwinkel, um die Leistungsabgabe zu maximieren und gleichzeitig Sicherheitsaspekte zu berücksichtigen.

Stellenangebote im Bereich Energie & Umwelt

Energie & Umwelt Jobs
Freie Universität Berlin-Firmenlogo
Ingenieur*in (m/w/d) Technischer Betrieb als Referatsleitung für Betriebstechnik u. bauliche Unterhaltung Freie Universität Berlin
Berlin-Wilmersdorf Zum Job 
Netzgesellschaft Potsdam GmbH-Firmenlogo
Projektingenieur (m/w/d) für Automatisierung und Netzführung Netzgesellschaft Potsdam GmbH
Potsdam Zum Job 
Berliner Stadtreinigung (BSR)-Firmenlogo
Mitarbeiter:in (w/m/d) strategisches Stoffstrom- und Anlagenmanagement Berliner Stadtreinigung (BSR)
Stadtwerke Essen AG-Firmenlogo
Ingenieur/Techniker (gn) für Kanal- und Entwässerungsplanung Stadtwerke Essen AG
Stuttgart Netze GmbH-Firmenlogo
Ingenieur Stationsplanung (w/m/d) Stuttgart Netze GmbH
Stuttgart Zum Job 
Berliner Stadtreinigungsbetriebe (BSR)-Firmenlogo
Betriebsleiterin / Betriebsleiter (w/m/d) Biogasanlage Berliner Stadtreinigungsbetriebe (BSR)
Berlin-Ruhleben Zum Job 
TenneT TSO GmbH-Firmenlogo
Ingenieur als Projektleiter Leitungsbau (m/w/d) TenneT TSO GmbH
Iqony Solutions GmbH-Firmenlogo
Projektleiter:in Energietechnik (m/w/d) - FTE 1 Iqony Solutions GmbH
VIVAVIS AG-Firmenlogo
Sales Manager (m/w/d) Metering VIVAVIS AG
Ettlingen / Homeoffice Zum Job 
VIVAVIS AG-Firmenlogo
Sales Manager (m/w/d) im Bereich der Energie- und Wasserversorgung VIVAVIS AG
Vertriebsregion Mitte (Hessen, Rheinland-Pfalz, Saarland) Zum Job 
FUNKE Wärmeaustauscher Apparatebau GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) FUNKE Wärmeaustauscher Apparatebau GmbH
Gronau (Leine) Zum Job 
Staatliche Gewerbeaufsicht Niedersachsen-Firmenlogo
Ingenieur / Naturwissenschaftler (m/w/d) für den Einsatz im Arbeitsschutz / Umweltschutz / Verbraucherschutz (Bachelor of Science / Bachelor of Engineering / Diplom / FH) Staatliche Gewerbeaufsicht Niedersachsen
Braunschweig Zum Job 
Staatliche Gewerbeaufsicht Niedersachsen-Firmenlogo
Ingenieur / Naturwissenschaftler (m/w/d) für den Einsatz im Arbeitsschutz / Umweltschutz / Verbraucherschutz (Master, Diplom Uni) Staatliche Gewerbeaufsicht Niedersachsen
verschiedene Standorte Zum Job 
Thyssengas GmbH-Firmenlogo
Ingenieur Projektleiter Leitungsbau (m/w/d) Thyssengas GmbH
Dortmund Zum Job 
Iqony Solutions GmbH-Firmenlogo
Projektingenieur (m/w/d) Prozesssimulation/Verfahrenstechnik Iqony Solutions GmbH
BIONORICA SE-Firmenlogo
Projektingenieur Gebäudetechnik / TGA (m/w/d) BIONORICA SE
Neumarkt Zum Job 
VTG GmbH Ingenieurbüro-Firmenlogo
Projektleitung Spezialtiefbau und Rohrvortrieb (m/w/d) VTG GmbH Ingenieurbüro
Haar bei München Zum Job 
VTG GmbH Ingenieurbüro-Firmenlogo
Projektleitung Kanalbau / Wasserwirtschaft (m/w/d) VTG GmbH Ingenieurbüro
Haar bei München Zum Job 
Iqony Solutions GmbH-Firmenlogo
Key-Account-Manager:in (m/w/d) Iqony Solutions GmbH
ILF CONSULTING ENGINEERS GERMANY GMBH-Firmenlogo
Lead Ingenieur für Thermische Systeme (m/w/d) ILF CONSULTING ENGINEERS GERMANY GMBH
München Zum Job 
Freie Universität Berlin-Firmenlogo
Ingenieur*in (m/w/d) Technischer Betrieb als Referatsleitung für Betriebstechnik u. bauliche Unterhaltung Freie Universität Berlin
Berlin-Wilmersdorf Zum Job 
Netzgesellschaft Potsdam GmbH-Firmenlogo
Projektingenieur (m/w/d) für Automatisierung und Netzführung Netzgesellschaft Potsdam GmbH
Potsdam Zum Job 
Berliner Stadtreinigung (BSR)-Firmenlogo
Mitarbeiter:in (w/m/d) strategisches Stoffstrom- und Anlagenmanagement Berliner Stadtreinigung (BSR)
Stadtwerke Essen AG-Firmenlogo
Ingenieur/Techniker (gn) für Kanal- und Entwässerungsplanung Stadtwerke Essen AG

Grenzen der ursprünglichen Formel für Windenergie entdeckt

Die bisherige Impulstheorie, die die Wechselwirkung zwischen Rotoren und ihrer Umgebung beschreibt, stammt aus dem späten 19. Jahrhundert. Sie erlaubte Ingenieurinnen und Ingenieuren, die maximale Leistung einer bestimmten Rotorkonstruktion zu berechnen oder die erforderliche Leistung für eine gewünschte Antriebskraft bei Propellern zu ermitteln. Auf dieser Grundlage definierte der Physiker Albert Betz 1920 die theoretische Obergrenze für die Energiegewinnung aus Wind, die sogenannte Betz-Grenze von 59,3 Prozent der kinetischen Windenergie. Allerdings zeigten sich bald die Grenzen dieser Theorie, vor allem bei höheren Kräften, schnelleren Blattdrehzahlen oder veränderten Blattwinkeln. Die Theorie besagt, dass die Kraft ab einer bestimmten Rotationsgeschwindigkeit oder einem bestimmten Rotorblattwinkel abnehmen sollte. Doch Testreihen zeigten das Gegenteil: Die Kraft nahm weiter zu. „Die Theorie ist also nicht nur quantitativ, sondern auch qualitativ falsch“, sagt Howland.

Das neue Modell des MIT-Teams berücksichtigt die komplexen Wechselwirkungen zwischen Luftströmung und Turbinen, die in realen Windparks auftreten. Die Forschenden erkannten, dass die ursprüngliche Annahme eines schnellen Druckausgleichs hinter dem Rotor bei zunehmender Schubkraft immer ungenauer wird. Besonders relevant ist dies nahe der Betz-Grenze, dem angestrebten Betriebsbereich für Turbinen. „Wir haben also die Vorhersage von Betz, wo wir die Turbinen betreiben sollten, und innerhalb von zehn Prozent dieses Betriebssollwertes, der unserer Meinung nach die Leistung maximiert, verschlechtert sich die Theorie völlig und funktioniert nicht“, erläutert Howland. Das Team entwickelte deshalb noch einen weiteren Ansatz, um die eindimensionale Modellierung der ursprünglichen Formel zu überwinden, indem sie Gleichungen zur Vorhersage des Auftriebs dreidimensionaler Flügel integrierten.

Bessere Aerodynamik machen Windparks effizienter

Das neu entwickelte einheitliche Impulsmodell des MIT-Teams führt zu einer Neubewertung des Betz-Grenzwerts. Es zeigt, dass es möglich ist, etwas mehr Leistung zu erzielen. Es handelt sich also nicht um eine signifikante Änderung, und trotzdem wird der Betz-Grenzwert, der seit hundert Jahren als Faustregel gilt, aufgrund der neuen Theorie tatsächlich geändert. Das Modell liefert zudem Einblicke, wie die Leistung von Turbinen maximiert werden kann, die nicht optimal zum Luftstrom ausgerichtet sind – ein Aspekt, der sich mit dem ursprünglichen Betz-Grenzwert nicht erklären ließ.

Die praktische Anwendung dieser Erkenntnisse erfordert keine Änderungen an den bestehenden Komponenten der Windparks. Das neue Modell ermöglicht nun eine präzisere Vorhersage der Leistungsabgabe einer Turbine bei Veränderungen wie dem Winkel zum Wind. „Mit unserer Theorie kann man zum ersten Mal direkt und ohne empirische Korrekturen sagen, wie man eine Windkraftanlage betreiben sollte, um ihre Leistung zu maximieren“, erklärt Howland. Darüber hinaus lassen sich die Erkenntnisse auch bei Propellern von Flugzeugen und Schiffen sowie hydrokinetische Turbinen einsetzen. Das System steht als Open-Source-Software zur Verfügung und soll die Windenergieforschung voranbringen, um die notwendige Kapazität und Zuverlässigkeit zur Bekämpfung des Klimawandels zu entwickeln.

Ein Beitrag von:

  • Nina Draese

    Nina Draese hat unter anderem für die dpa gearbeitet, die Presseabteilung von BMW, für die Autozeitung und den MAV-Verlag. Sie ist selbstständige Journalistin und gehört zum Team von Content Qualitäten. Ihre Themen: Automobil, Energie, Klima, KI, Technik, Umwelt.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.