Palladium statt Platin: Günstiger Wasserstoff-Katalysator entdeckt
Palladium-Nanoblätter könnten Platin in der Wasserstoffproduktion ersetzen und die Kosten senken. Eine vielversprechende Innovation für saubere Energie.

Ein japanisches Forschungsteam hat eine kostengünstige Methode zur Herstellung von grünem Wasserstoff entwickelt.
Foto: PantherMedia / Banchaphoto
Wasserstoff gilt als zentrale Energiequelle für eine klimafreundliche Zukunft. Besonders grüner Wasserstoff, der durch Elektrolyse aus Wasser gewonnen wird, verspricht eine emissionsfreie Alternative zu fossilen Brennstoffen. Doch bisher sind die Produktionskosten hoch, insbesondere durch den Einsatz teurer Katalysatoren auf Platinbasis. Ein Forschungsteam der Tokyo University of Science (TUS) hat nun eine vielversprechende Alternative entwickelt: Palladium-Nanoblätter, die bei der Wasserstoffproduktion eine vergleichbare Effizienz wie Platin erreichen, jedoch deutlich günstiger sind.
Inhaltsverzeichnis
Ein neuer Katalysator für Wasserstoff
Forschende um Dr. Hiroaki Maeda und Professor Hiroshi Nishihara haben mit Bis(diimino)palladium-Koordinations-Nanoblättern (PdDI) eine neuartige Katalysator-Technologie entwickelt. Die Studie wurde am 28. November 2024 veröffentlicht und am 27. Januar 2025 in Chemistry – A European Journal publiziert. Die Fachzeitschrift wählte sie sogar als „Cover Feature“ aus, was die Relevanz der Entdeckung unterstreicht.
Traditionell werden Elektroden in der Wasserstoffentwicklung aus Platin gefertigt. Sie spielen eine entscheidende Rolle bei der elektrochemischen Reaktion, die Wasser in Wasserstoff und Sauerstoff aufspaltet. Platin ist jedoch selten und teuer, was die großflächige Nutzung von Wasserstoff als Energiequelle erschwert. Hier setzt die Innovation der TUS-Forschenden an: Ihre PdDI-Nanoblätter bieten eine vergleichbare katalytische Effizienz, benötigen aber deutlich weniger Edelmetall.
Effiziente Synthese und hohe Leistung
Die Herstellung der Palladium-Nanoblätter erfolgt über zwei Verfahren: die Gas-Flüssigkeits-Grenzflächensynthese und die elektrochemische Oxidation. Insbesondere die elektrochemisch aktivierten E-PdDI-Nanoblätter zeigten eine hohe Leistung. Ihr Überpotential lag mit 34 Millivolt (mV) nahezu auf dem Niveau von Platin (35 mV), sodass kaum zusätzliche Energie zur Wasserstoffproduktion erforderlich ist. Auch die Austauschstromdichte von 2,1 Milliampere pro Quadratzentimeter (mA/cm²) entspricht der von Platin-basierten Katalysatoren.
Dr. Maeda erklärt: „Die Entwicklung effizienter Katalysatoren ist der Schlüssel zu einer nachhaltigen Wasserstoffproduktion. Bis(diimino)metall-Koordinations-Nanoblätter zeichnen sich durch hohe Leitfähigkeit, eine große Oberfläche und eine effiziente Elektronenübertragung aus. Zudem reduziert ihre spezielle Anordnung den Materialverbrauch.“
Langzeitstabilität für industrielle Anwendungen
Ein entscheidender Faktor für den Einsatz in der Industrie ist die Langlebigkeit der Katalysatoren. In Langzeittests blieben die PdDI-Nanoblätter nach 12 Stunden unter sauren Bedingungen stabil, was ihre Eignung für großtechnische Anwendungen bestätigt. Die robuste Struktur und die hohe Effizienz könnten die Wasserstoffproduktion langfristig kostengünstiger und nachhaltiger machen.
Zusätzlich tragen Palladium-Nanoblätter zur Reduktion von Bergbau-Emissionen bei. Da die Dichte von Palladiumatomen zehnmal geringer als die von Platinatomen ist, wird weniger Metall benötigt. Dies könnte die Abhängigkeit von Platin verringern und die Umweltbelastung durch den Abbau wertvoller Rohstoffe reduzieren.
Potenzielle Auswirkungen und Zukunftsaussichten
Die Forschungsarbeit entspricht mehreren Nachhaltigkeitszielen der Vereinten Nationen (SDGs). Insbesondere SDG 7 (bezahlbare und saubere Energie) und SDG 9 (Industrie, Innovation und Infrastruktur) könnten von der neuen Katalysator-Technologie profitieren. Die Skalierbarkeit der PdDI-Nanoblätter macht sie zu einer vielversprechenden Lösung für die industrielle Wasserstoffproduktion und den Einsatz in Brennstoffzellen.
Dr. Maeda betont: „Unsere Forschung bringt uns einen Schritt näher an das Ziel, Wasserstoff günstiger und nachhaltiger zu produzieren.“ Die Wissenschaftlerinnen und Wissenschaftler der TUS arbeiten bereits daran, die Nanoblätter weiter zu optimieren und für industrielle Anwendungen nutzbar zu machen. Sollte die Technologie im großen Maßstab umgesetzt werden, könnte sie einen erheblichen Beitrag zur Energiewende leisten.
Ein Beitrag von: