Pilotprojekt gestartet: Krankenhaus bekommt Strom und Wärme aus Wasserstoff
Zwei neue Wasserstoff-Technologien werden in einem Krankenhaus erstmalig in einer wirtschaftlich relevanten Größenordnung miteinander kombiniert. Die Technik stammt von Bosch und Hydrogenius, koordiniert wird das Pilotprojekt vom Helmholtz-Cluster Wasserstoff.
Es könnte ein Vorzeigeprojekt für die klimafreundliche Energieversorgung der Zukunft werden: Am Hermann-Josef-Krankenhaus (HJK) Erkelenz werden erstmals zwei neue Wasserstoff-Technologien in einer wirtschaftlich relevanten Größenordnung miteinander gekoppelt. Die Technik steuern die Robert Bosch GmbH und die Hydrogenius LOHC NRW GmbH bei, koordiniert wird das Projekt vom Helmholtz-Cluster Wasserstoff (HC-H2), das aus dem Forschungszentrum Jülich hervorgegangen ist.
Zwei neue Wasserstoff-Technologien werden miteinander verbunden
Im ersten Schritt wird im Laufe des Jahres das neuartige Festoxid-Brennstoffzellen-System von Bosch installiert. Es bildet den Mittelpunkt des Projekts und soll das Krankenhaus mit Strom und Wärme versorgen. Die SOFC-Anlage wird die Leistungsklasse 100 Kilowatt haben und soll das bestehende Blockheizkraftwerk ergänzen. Ab Anfang 2025 soll die Versorgung mit Wasserstoff mit der Liquid Organic Hydrogen Carrier (flüssiger organischer Wasserstoffträger, LOHC)-Technologie durch die Firma Hydrogenious erfolgen. In der ersten Projektphase wird das SOFC-System noch mit Erdgas betrieben.
Das Bosch Brennstoffzellensystem SOFC
Das dezentrale Energieversorgungssystem SOFC von Bosch kann sowohl erneuerbare Energieträger wie Wasserstoff aus Wind oder Sonne nutzen, als auch Strom und Wärme aus klassischen Energieträgern wie Biomethan oder Erdgas erzeugen. Die Feststoff-Brennstoffzellen-Technologie eignet sich nach Angaben des Herstellers für Stadtquartiere, Nutzgebäude, Industrieanlagen oder Rechenzentren.
Beim Betrieb mit Erdgas oder Biomethan werden diese Energieträger im Reformer der Brennstoffzelle in Wasserstoff umgewandelt. Wasserstoff wiederum wird in der Brennstoffzelle in Strom und Wärme umgesetzt. Laut Angaben von Bosch liegt der Wirkungsgrad der Anlage bei mehr als 60 Prozent, wenn sie rein zur Stromerzeugung genutzt wird. Der Gesamtwirkungsgrad soll auf über 85 Prozent steigen, wenn zusätzlich die entstehende Wärme genutzt wird.
„Die dezentrale Stromversorgung wird immer wichtiger. Unser Festoxid-Brennstoffzellensystem produziert klimafreundlich und bedarfsorientiert Strom. Damit schaffen wir Versorgungssicherheit für kritische Infrastrukturen wie Krankenhäuser und leisten einen wichtigen Beitrag für den Klimaschutz.“ Dr. Wilfried Kölscheid, Senior Vice President bei Bosch und verantwortlich für das stationäre Festoxid-Brennstoffzellen-Programm
Die LOHC-Technologie von Hydrogenious
Bei der LOHC-Technologie geht es um das Speichern von Wasserstoff in flüssigen organischen Wasserstoffträgern. Dabei handelt es sich um organische Verbindungen, die Wasserstoff durch chemische Reaktion aufnehmen und wieder abgeben können. Prinzipiell kann jede ungesättigte Verbindung bei Hydrierung Wasserstoff aufnehmen. Einer der führenden Hersteller auf diesem Gebiet ist Hydrogenius LOHC Technologies, eine Ausgründung der Friedrich-Alexander-Universität Erlangen.
Das Unternehmen aus Erlangen hat im Januar 2016 die weltweit erste kommerzielle LOHC-Anlage zur Wasserstoffspeicherung in Benzyltoluol eingeweiht. Seit 2017 werden erste LOHC-Systeme für kommerzielle Anwendungen in die USA geliefert. Die Technologie ermöglicht es zum Beispiel, Wasserstofftankstellen mit über 1.000 Kilogramm gespeichertem Wasserstoff vor Ort in dicht besiedelten Gebieten oder an Standorten mit begrenztem Platzbedarf zu realisieren. Im Chemiepark Dormagen entsteht derzeit die weltweit größte Anlage für die Einspeicherung von grünem Wasserstoff in LOHC.
Bei Benzyltuol handelt es sich um ein Thermalöl, das sich bei Umgebungsdruck- und temperatur einfach und sicher handhaben lässt. Selbst mit Wasserstoff beladen ist dieses LOHC schwer entflammbar und nicht explosiv. Darüber hinaus geht dabei kein Wasserstoff aus dem LOHC verloren. Anders als bei alternativen Methoden wie der Kompression bei hohem Druck oder dem Verflüssigen des Wasserstoffs bei minus 253 Grad Celsius. Zumal diese Methoden sehr energieintensiv sind.
„Das Projekt in Erkelenz ist ein eindrucksvoller Beleg für das große Potenzial, das in einer Verbindung innovativer Wasserstoff-Technologien steckt. Gleichzeitig ist es für uns eine großartige Gelegenheit, klimafreundliche Energieversorgung in NRW zu demonstrieren.“ Dr. Caspar Paetz, Chief Technology Officer Hydrogenious LOHC Technologies
40 Prozent weniger CO2-Emissionen in der ersten Projektphase
In der ersten Projektphase wird das SOFC-Brennstoffsystem noch mit Erdgas betrieben. Doch bereits hier ergeben sich Vorteile im Vergleich mit dem bereits im Krankenhaus vorhandenen und mit Erdgas befeuerten Gasmotor. Der Gasmotor hat einen elektrischen Wirkungsgrad von 36 Prozent, bei der Anlage von Bosch liegt er bei 60 Prozent, wie bereits geschrieben. Die Stromerzeugung mit Hilfe von Erdgas und Brennstofftechnik erzeugt somit knapp 40 Prozent weniger CO2. Das Krankenhaus kann bei Dauerbetrieb rund 150 Tonnen Kohlendioxid pro Jahr einsparen.
Zusätzlich soll in der ersten Projektphase jedoch auch die bei der Umwandlung von Wasserstoff in Strom entstehende Wärme genutzt werden. Das SOFC-System erreicht bei dieser Kombination von Strom und Wärme einen Gesamtwirkungsgrad von 85 Prozent und ist somit hocheffizient. Im weiteren Verlauf des Projektes ist geplant, den Wasserstoff-Anteil im Gasgemisch für das SOFC-System schrittweise zu steigern und somit immer klimafreundlicher zu werden. Es können weitere CO2-Emissionen eingespart werden.
„Im Klinikbetrieb werden konstant mindestens 92 Kilowatt Strom und 220 Kilowatt Wärme pro Jahr verbraucht. Durch den Betrieb rund um die Uhr haben wir eine konstante Abnahmemenge, die wichtig für das Projekt war. “ Jann Habbinga, Verwaltungsdirektor des Hermann-Josef-Krankenhauses Erkelenz
In der zweiten Projektphase erhält das SOFC-System Wasserstoff aus LOHC
In der zweiten Projektphase ab 2025 soll das SOFC-System komplett ohne Erdgas auskommen. Es wird dann direkt mit Wasserstoff versorgt, der chemisch an einen flüssigen organischen Wasserstoffträger gebunden wurde, dem sogenannten LOHC (englisch: liquid organic hydrogen carriers). Vor Ort wird dann der in LOHC gespeicherte Wasserstoff in einer Dehydrierungsanlage von Hydrogenius freigesetzt. Der Wasserstoff wird anschließend in die Brennstoffzellen eingespeist.
Die Wärme aus dem SOFC-System wird zum Hochfahren dieser LOHC-Anlage genutzt und soll in Zukunft auch Energie liefern, die bei der Freisetzungsreaktion des Wasserstoffs aus dem LOHC notwendig ist. Bis dahin wird das System elektrisch beheizt. Das Projekt in Erkelenz ist das erste von mehreren Demonstratoren, die das HC-H2 im Rheinischen Revier koordiniert.
„Das Projekt ist ein wichtiger Meilenstein, weil wir im Revier mit unseren Partnern zum ersten Mal großskalig eine Technologie demonstrieren, die weltweit eine Lösung sein kann für die klimafreundliche Energieversorgung von großen Gebäudekomplexen.“ Prof. Dr. Peter Wasserscheid, Sprecher des Helmholtz-Cluster Wasserstoff HC-H2
Jetzt vormerken: Auf dem Deutschen Ingenieurtag 2023 geht es unter anderem auch um den Einsatz von Wasserstoff
Ein Beitrag von: