Strom aus Osmose 26.04.2024, 12:00 Uhr

Revolution der Membran: Chance für Osmosekraftwerke?

Das bisher einzige Osmosekraftwerk weltweit wurde 2013 wegen mangelnder Effizienz stillgelegt. Nun könnte die Idee, Strom aus dem unterschiedlichen Salzgehalt von Meer- und Flusswasser zu gewinnen, neuen Auftrieb erhalten. Dank neuer Membran.

Elbmündung bei Cuxhaven

Die Elbmündung bei Cuxhaven wäre einer der wenigen möglichen Standorte für ein Osmosekraftwerk in Deutschland.

Foto: PantherMedia / Kerstin Hennig

Die Idee klingt verlockend: Stromerzeugung aus dem unterschiedlichen Salzgehalt von Meerwasser und Süßwasser. Ein Osmosekraftwerk könnte das. Doch der weltweit einzige Prototyp in Norwegen schaffte es gerade, genug Energie zu erzeugen, um eine Tasse Tee zu erwärmen. Das Problem: Die Membran, die Süß- und Salzwasser trennt, war zu teuer und ineffizient. Ein Forscherteam aus China meldet nun einen Durchbruch bei genau dieser Membran. Haben Osmosekraftwerke jetzt eine Zukunft?

So funktioniert ein Osmosekraftwerk

Ein Osmosekraftwerk, auch Salzgradientenkraftwerk genannt, nutzt den unterschiedlichen Salzgehalt von Süß- und Meerwasser zur Energiegewinnung. Die Idee, solche Kraftwerke zu bauen, kam erstmals in den 1970er Jahren auf. Seit Ende der 1990er Jahre werden verstärkt Forschungs- und Entwicklungsprojekte durchgeführt. Der weltweit erste Prototyp wurde am 24. November 2009 im norwegischen Tofte am Oslofjord in Betrieb genommen.

Top Stellenangebote

Zur Jobbörse
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieur als Fachexperte Umweltschutz (w/m/d) Die Autobahn GmbH des Bundes
Hannover Zum Job 
Hasse & Wrede GmbH-Firmenlogo
Torsional Vibration Solution Architect (m/f/d) Hasse & Wrede GmbH
Berlin (Home-Office) Zum Job 
Hasse & Wrede GmbH-Firmenlogo
Entwicklungsingenieur für Torsionsschwingungslösungen (m/w/d) Hasse & Wrede GmbH
Berlin (Home-Office) Zum Job 
MicroNova AG-Firmenlogo
Industrial Engineer (m/w/d) Electrical Engineering / Elektrotechnik MicroNova AG
Vierkirchen Zum Job 
JOSEPH VÖGELE AG-Firmenlogo
Konstruktionsingenieur (m/w/d) Maschinenbau JOSEPH VÖGELE AG
Ludwigshafen am Rhein Zum Job 
NORMA Group Holding GmbH-Firmenlogo
Product Design Engineer (m/f/d) NORMA Group Holding GmbH
Maintal Zum Job 
DFS Deutsche Flugsicherung GmbH-Firmenlogo
Ingenieur (w/m/d) - Teilprojektleitung für Bauprojekte DFS Deutsche Flugsicherung GmbH
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieur (w/m/d) konstruktiver Ingenieurbau Die Autobahn GmbH des Bundes
Bundeswehr-Firmenlogo
Ingenieurin / Ingenieur mit Bachelor (m/w/d) Bundeswehr
keine Angabe Zum Job 
SARPI Deutschland GmbH-Firmenlogo
Junior-Betriebsingenieur/Verfahrensingenieur Prozesstechnik (m/w/d) SARPI Deutschland GmbH
Cummins Deutschland GmbH-Firmenlogo
Application Engineer (m/w/d) Systems / Software für Nutzfahrzeuge Cummins Deutschland GmbH
Nürnberg Zum Job 
Jülich Forschungszentrum-Firmenlogo
Revisor mit Schwerpunkt Baurevision oder IT-Revision (w/m/d) Jülich Forschungszentrum
Jülich bei Köln Zum Job 
Bundeswehr-Firmenlogo
Ingenieurin / Ingenieur mit Bachelor (m/w/d) Bundeswehr
keine Angabe Zum Job 
MKH Greenergy Cert GmbH-Firmenlogo
Projekt-Ingenieur (m/w/d) in der Anlagenzertifizierung MKH Greenergy Cert GmbH
Hamburg Zum Job 
Schleifring GmbH-Firmenlogo
Vertriebsingenieur (m/w/d) Schleifring GmbH
Fürstenfeldbruck Zum Job 
mondi-Firmenlogo
Junior Anwendungstechniker (m/w/x) mondi
Steinfeld Zum Job 
Energieversorgung Leverkusen GmbH & Co.KG-Firmenlogo
Technische Mitarbeiter Vertragsmanagement (m/w/d) Energieversorgung Leverkusen GmbH & Co.KG
Leverkusen Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieur (m/w/d) für Straßenausstattungsanlagen und Verkehrsführung Die Autobahn GmbH des Bundes
Osnabrück Zum Job 
Sprint Sanierung GmbH-Firmenlogo
Projektleiter (m/w/d) Großschäden Sprint Sanierung GmbH
Düsseldorf Zum Job 

Die Funktionsweise eines Osmosekraftwerks ist relativ einfach: Meerwasser fließt durch ein Rohr in die Anlage und trifft dort auf Süßwasser aus einem Fluss, das durch ein zweites Rohr geleitet wird. Eine Membran trennt die beiden Wasserkörper. Aufgrund des unterschiedlichen Salzgehalts strömt das Süßwasser durch die Membran, um die Konzentrationen auszugleichen. Dabei entsteht Druck, der eine Turbine antreibt und Strom erzeugt. Bei einem Salzgehalt von 3,5 % und einer Wassertemperatur von 10 °C entsteht ein osmotischer Druck von ca. 28 bar.

Ein großer Vorteil des Osmosekraftwerks ist seine Zuverlässigkeit. Als Grundlastkraftwerk liefert es – im Gegensatz zu Windrädern und Solarzellen – kontinuierlich und wetterunabhängig Strom. Zudem lässt sich ein solches Kraftwerk ideal in Küstennähe bauen, wo Flüsse ins Meer münden und oft große Städte liegen.

So viel Potenzial hätte die Stromerzeugung durch Osmose

Wie bereits erwähnt, gab es bisher weltweit nur einen Prototyp eines Osmosekraftwerks. Dieses wurde von Statkraft, dem nach eigenen Angaben größten Erzeuger erneuerbarer Energien in Europa, betrieben. Die Anlage in Norwegen diente hauptsächlich Test- und Entwicklungszwecken und erzeugte gerade genug Energie, um auf einer Herdplatte kochen zu können. Um eine Kleinstadt mit 30.000 Einwohnern zu versorgen, müsste ein Osmosekraftwerk die Größe eines Fußballstadions haben.

Bevorzugte Standorte für solche Kraftwerke sind Flussmündungen, wo Süß- und Salzwasser aufeinandertreffen. Statkraft setzte große Hoffnungen in diese Technologie und schätzte das weltweite Potenzial auf 1.600 Terawattstunden pro Jahr, davon allein 180 Terawattstunden in Europa.

Sind Osmoskraftwerke in Deutschland möglich?

Der aussichtsreichste Standort in Deutschland ist die Mündung der Elbe in die Nordsee. Prof. Dr. Peter Stenzel errechnete 2012 in seiner Promotion an der Ruhr-Universität Bochum, dass die Nutzung aller deutschen Flüsse, die in Nord- und Ostsee münden, ein ökologisches Potenzial von rund 42 MW oder 330 GWh pro Jahr hat, was etwas mehr als 0,5 Prozent des deutschen Strombedarfs entspricht. Eine andere Studie schätzt diesen Beitrag allerdings auf nur etwa 0,05 %.

Statkraft schätzt das weltweite Potenzial für Osmosekraftwerke auf 1.600 Terawattstunden pro Jahr. Das ist beachtlich, denn zum Vergleich: Laut Statista wurden im Jahr 2023 rund 2.400 Terawattstunden in die öffentlichen Netze der EU eingespeist. Zurück noch mal nach Norwegen: Zunächst lief der Prototyp in Tofte gut und es gab Pläne für eine größere Anlage. Doch im Dezember 2013 wurde bekannt, dass die Technologie nicht weiterentwickelt wird, da sie kurzfristig nicht wettbewerbsfähig sei. Neue Entwicklungen aus China sind jedoch vielversprechend.

Macht neue Membran Osmosekraftwerke konkurrenzfähig?

Der Hauptgrund, warum Norwegen das Osmosekraftwerk im Jahr 2013 nicht weiterbetrieben hat, war die wenig effiziente und teure Membran. In den vergangenen Jahren wurde auf der ganzen Welt an neuen und besseren Membranen geforscht. Im April 2024 vermeldet ein chinesisches Forschungsteam der Guangxi University und der Anhui Agricultural University einen wichtigen Durchbruch. Die Studie wurde in der Zeitschrift ACS Energy Letters veröffentlicht.

In der Studie beschreibt das Forschungsteam eine neue Membran entwickelt, die die Stromgewinnung aus Salzwasser deutlich effizienter machen könnte. Der Clou: Getrennte Kanäle für den Ionen- und Elektronentransport. Dazu pressten die Experten ein negativ geladenes Zellulosehydrogel zwischen Schichten aus Polyanilin, einem elektrisch leitfähigen Polymer. Diese neuartige Membran soll die Stromausbeute im Vergleich zu bisherigen Modellen erheblich steigern.

Tests bestätigen die Theorie

Erste Tests bestätigen die Theorie: Entkoppelte Transportkanäle führen zu einer höheren Ionenleitfähigkeit und einem geringeren Widerstand. In einem Wassertank, der eine Flussmündung simulierte, erreichte der Prototyp der Forscher eine 2,34-mal höhere Leistung als herkömmliche Membranen. Bemerkenswert: Das Mini-Kraftwerk lief 16 Tage lang am Stück.

In einem weiteren Test schalteten die Forscher 20 dieser Salzbatterien in Reihe. Diese Anordnung lieferte genug Strom, um einen Taschenrechner und eine LED-Lampe zu betreiben. Für nennenswerte Strommengen müssten allerdings tausende solcher Arrays in einer Flussmündung installiert werden. Verbesserungsbedarf besteht zudem bei der Lebensdauer der Membran: Aktuell hält sie nur 16 Tage durch.

Variante des Osmosekraftwerks

Ein Kraftwerk in den Niederlanden nutzt ein anderes Prinzip der Osmose, die so genannte umgekehrte Elektrodialyse. Das Kraftwerk wurde 2014 am Abschlussdeich, der das Ijsselmeer von der Nordsee trennt, in Betrieb genommen.

In der Pilotanlage fließen Fluss- und Meerwasser aneinander vorbei. Dazwischen befinden sich zwei spezielle Membranen: Die eine ist durchlässig für positiv geladene Natriumionen, die andere für negativ geladene Chloridionen. Sobald die Ionen durch diese Membranen diffundieren, entsteht eine elektrische Spannung und die Anlage beginnt Strom zu erzeugen.

 

Ein Beitrag von:

  • Dominik Hochwarth

    Redakteur beim VDI Verlag. Nach dem Studium absolvierte er eine Ausbildung zum Online-Redakteur, es folgten ein Volontariat und jeweils 10 Jahre als Webtexter für eine Internetagentur und einen Onlineshop. Seit September 2022 schreibt er für ingenieur.de.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.