Erneuerbare Energien 18.07.2024, 07:00 Uhr

Solarzellen der Zukunft: Durchbruch dank ultraschnellem Mikroskop

Forschende der Universitäten Regensburg und Oxford haben mithilfe eines neuartigen ultraschnellen Mikroskops faszinierende Einblicke in die Bewegung von Elektronen in Perowskit-Solarzellen gewonnen. Diese Erkenntnisse könnten den Weg zu noch effizienteren Photovoltaik-Anwendungen ebnen.

Künstlerische Darstellung der vertikalen Bewegungen von Elektronen

Künstlerisch dargestellt zeigen sich die vertikalen Bewegungen von Elektronen durch die Nanokristallite eines Metallhalogenid-Perowskitfilms wie zahlreiche Blitze.

Foto: Brad Baxley (Part to Whole)

Metall-Halogenid-Perowskite gelten als vielversprechende Materialien für die Entwicklung nachhaltiger Energiegewinnungsmethoden. Solarzellen auf Basis dieser Verbindungen erreichten in Rekordzeit Wirkungsgrade, die mit herkömmlichen Silizium-Solarzellen vergleichbar sind. Darüber hinaus punkten Perowskit-Solarzellen mit geringeren Herstellungs- und Energiekosten sowie einer großen Flexibilität und Leichtigkeit. Das macht sie vielseitig einsetzbar – und zwar auf unterschiedlichen Oberflächen.

Die Funktionsweise einer Solarzelle lässt sich folgendermaßen erklären: Photonen, die Lichtquanten des Sonnenlichts, treffen auf die Solarzelle und werden dort absorbiert. Ihre Energie übertragen sie dabei auf Elektronen, die dadurch auf Bahnen mit höherer Energie gelangen und sich freier bewegen. An speziellen elektrischen Kontakten lassen sich diese Elektronen extrahieren und in nutzbare elektrische Energie umwandeln. Wie effizient eine Solarzelle arbeitet, hängt entscheidend davon ab, wie leicht diese kurzlebigen Ladungsträger das Material durchqueren und die Kontakte erreichen können, bevor sie wieder zerfallen. Um Solarzellen gezielt weiter zu verbessern, muss man also genau verstehen, wie dieser Transport funktioniert. Konkret, welche Wege die Elektronen einschlagen und was ihre Bewegung einschränkt.

Innovative Solarzellen: Nanokristalle im Fokus

„Wir bringen die Atome in den Nanokristalliten zum Schwingen. Dies hinterlässt, abhängig von der Anordnung der Atome, eindeutig zuordenbare Signaturen im gestreuten Licht – so etwas wie einen Fingerabdruck. Damit können wir genau rückschließen, wie die Atome in den jeweiligen Kristalliten angeordnet sind“, erklärt Martin Zizlsperger, Erstautor der Veröffentlichung. Das Forscherteam um Rupert Huber, Leiter des Lehrstuhls für experimentelle und angewandte Physik an der Universität Regensburg, nutzte ein maßgeschneidertes ultraschnelles Mikroskop, um die gezielte Erzeugung und Diffusion freier Elektronen in den Perowskit-Nanokristallen zu untersuchen. Die Herausforderung bestand darin, dass diese Solarzellen nicht homogen sind, sondern aus vielen kleinen Körnern im Nanometerbereich bestehen, die zudem in unterschiedlichen atomaren Strukturen vorliegen können.

Nachdem die Wissenschaftlerinnen und Wissenschaftler die genaue Form und Kristallstruktur der Nanofelsen bestimmt hatten, beleuchteten sie die Probe mit einem kurzen Lichtimpuls, der – ähnlich wie die Sonne – Elektronen in bewegliche Zustände versetzt. Die anschließende Ladungsbewegung konnte mithilfe eines zweiten Laserimpulses präzise vermessen werden. „Sehr vereinfacht gesprochen, wirken die Ladungen wie ein Spiegel. Wenn sich diese Ladungen nun zum Beispiel nach unten weg von unserem Messpunkt bewegen, dann wird der zweite Laserimpuls später reflektiert. Aus diesem winzigen Zeitversatz von nur wenigen Femtosekunden – wobei eine Femtosekunde dem millionsten Bruchteil einer milliardstel Sekunde entspricht – können wir die genaue Bewegung der Ladungen rekonstruieren“, erläutert Mitautorin Svenja Nerreter. Die gewonnenen Erkenntnisse liefern wertvolle Ansatzpunkte, um das Potenzial von Perowskit-Solarzellen noch besser auszuschöpfen und die Effizienz dieser neuartigen Photovoltaik-Technologie weiter zu steigern.

Stellenangebote im Bereich Energie & Umwelt

Energie & Umwelt Jobs
Bruno Bock Group-Firmenlogo
Project Manager (m/w/d) Energy Management Bruno Bock Group
Landeshauptstadt Düsseldorf-Firmenlogo
Leitung des städtischen Krematoriums (m/w/d) für das Garten-, Friedhofs- und Forstamt Landeshauptstadt Düsseldorf
Düsselodrf Zum Job 
Hochschule Reutlingen-Firmenlogo
Akademische:r Mitarbeiter:in "Wärmewende" (m/w/x) Hochschule Reutlingen
Reutlingen Zum Job 
IPH Institut "Prüffeld für elektrische Hochleistungstechnik" GmbH-Firmenlogo
Ingenieur Elektrotechnik LV (m/w/d) IPH Institut "Prüffeld für elektrische Hochleistungstechnik" GmbH
Berlin-Marzahn Zum Job 
Recogizer-Firmenlogo
Projektingenieur (m/w/d) KI-gestützte CO2-Reduktion Recogizer
Pfisterer Kontaktsysteme GmbH-Firmenlogo
High Voltage Testing Specialist (w/m/d) Pfisterer Kontaktsysteme GmbH
Winterbach Zum Job 
Berliner Stadtreinigungsbetriebe (BSR)-Firmenlogo
Projektleiterinnen / Projektleiter Energiewirtschaft (w/m/d) Berliner Stadtreinigungsbetriebe (BSR)
Universitätsklinikum Leipzig-Firmenlogo
Projektleiter Infrastrukturmaßnahmen (m/w/d) Bereich 5 - Bau und Gebäudetechnik Universitätsklinikum Leipzig
Leipzig Zum Job 
Mall GmbH-Firmenlogo
Ingenieur Wasserwirtschaft / Umweltwissenschaft (m/w/d) Mall GmbH
Donaueschingen Zum Job 
Stadtwerke Bad Vilbel GmbH-Firmenlogo
Referent Regulierungsmanagement (m/w/d) Stadtwerke Bad Vilbel GmbH
Bad Vilbel Zum Job 
Stadt Mannheim-Firmenlogo
Projektleitung Strategie / technische Konzepte (m/w/d) Stadt Mannheim
Mannheim Zum Job 
VGH Versicherungen-Firmenlogo
Energiemanager (m/w/d) VGH Versicherungen
Hannover Zum Job 
Staatliches Bauamt Nürnberg-Firmenlogo
Projektleitung (m/w/d) mit Schwerpunkt Bauleitung Staatliches Bauamt Nürnberg
Nürnberg Zum Job 
via Engineering Management Selection E.M.S. AG-Firmenlogo
Mechanical engineer as project manager in plant construction (m/f/d) via Engineering Management Selection E.M.S. AG
Western Switzerland Zum Job 
Stadt Freiburg-Firmenlogo
Projektleitung (a) Parkraummanagement Stadt Freiburg
Freiburg Zum Job 
Landeswohlfahrtsverband Hessen (LWV)-Firmenlogo
Dipl.-Ingenieurin / Dipl.-Ingenieur (m/w/d) oder Bachelor / Master (m/w/d) Fachrichtung Architektur oder Bauingenieurwesen Landeswohlfahrtsverband Hessen (LWV)
Stadt Reutlingen-Firmenlogo
Beauftragte (m/w/d) für eine klimaneutrale Stadtverwaltung Stadt Reutlingen
Reutlingen Zum Job 
HUBER SE-Firmenlogo
Vertriebsingenieur (m/w/d) Industrial Solutions - Team Food HUBER SE
Berching Zum Job 
naturenergie netze GmbH-Firmenlogo
Teamleiter (m/w/d) Netzentwicklung naturenergie netze GmbH
Rheinfelden (Baden) Zum Job 
einsfünf Beratungsgesellschaft mbH-Firmenlogo
Berater*in Energiemanagement einsfünf Beratungsgesellschaft mbH
Aachen, Düsseldorf, Köln Zum Job 

Neuer Einblick in Ladungstransport von Perowskit-Solarzellen

Die Forschenden beobachteten genau, wie die angeregten Elektronen sich ihren Weg durch das Labyrinth der verschiedenen Kristallite bahnen. Insbesondere untersuchten sie die technisch besonders relevante Bewegung in die Solarzelle hinein nach der Anregung. Die Ergebnisse überraschten: Trotz der vielen unterschiedlichen Nanokristalle beeinflusst die genaue Form der Nanokristallite den vertikalen Ladungstransport auf der Nanometer-Längenskala nicht – ein möglicher Grund für den Erfolg von Perowskit-Solarzellen. Bei der Untersuchung größerer Regionen auf der Skala mehrerer hundert Mikrometer zeigten sich jedoch Unterschiede zwischen Mikrometer-großen Bereichen aus hunderten kleinen Nanokristalliten, wobei einige Regionen den Ladungstransport effizienter bewältigen als andere.

Diese lokalen Hotspots könnten bei der Entwicklung neuer Solarzellen eine große Rolle spielen. Die neuartige Messmethode der Forschenden ermöglicht einen direkten Einblick in die Verteilung und Effizienz der einzelnen Regionen und stellt einen wichtigen Schritt zur weiteren Verbesserung von Perowskit-Solarzellen dar. Die renommierte Fachzeitschrift Nature Photonics veröffentlichte die Ergebnisse. „Unsere neu entwickelte Methode erlaubt uns erstmals, das komplexe Zusammenspiel zwischen Ladungstransport, Kristallkonfiguration und der Form der Kristallite direkt auf der Nanoskala zu beobachten. Damit kann sie genutzt werden, um Perowskit-Solarzellen gezielt weiter zu verbessern“, erklärt Huber.

Vielfältige Anwendungsmöglichkeiten der neuen Messmethode

Die neuartige Messmethode beschränkt sich nicht nur auf moderne Solarzellen, denn das Wechselspiel zwischen Struktur und Ladungstransport besitzt für eine Vielzahl moderner Anwendungen eine zentrale Bedeutung. Der Durchbruch könnte somit auch für die Entwicklung von ultimativ kleinen und schnellen Transistoren sowie für die Erklärung eines der größten Rätsel der Festkörperphysik – Hochtemperatur-Supraleitung – eine wertvolle Hilfe darstellen.

Ein Beitrag von:

  • Nina Draese

    Nina Draese hat unter anderem für die dpa gearbeitet, die Presseabteilung von BMW, für die Autozeitung und den MAV-Verlag. Sie ist selbstständige Journalistin und gehört zum Team von Content Qualitäten. Ihre Themen: Automobil, Energie, Klima, KI, Technik, Umwelt.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.