Von Bakterien inspiriert 18.09.2024, 12:24 Uhr

Synthetischer Mini-Motor zeigt beeindruckende Kraft durch chemische Energieumwandlung

Inspiriert von Bakterien haben Forscher erstmals einen synthetischen Mini-Motor entwickelt, der chemische Energie auf supramolekularer Ebene in Rotationsenergie umwandelt. Dieser neuartige Motor, der aus winzigen Bändern besteht, zeigt eine beeindruckende Kraft und eröffnet neue Möglichkeiten für die Anwendung in Nanotechnologien.

Petrischale

Synthetischer Mini-Motor: Chemischer Treibstoff verwandelt sich in präzise Rotationsbewegungen auf supramolekularer Ebene. (Symbolbild)

Foto: PantherMedia / IgorVetushko

Wissenschaftler der Technischen Universität München (TUM) haben einen innovativen künstlichen Motor auf supramolekularer Ebene entwickelt, der bemerkenswerte Kräfte entfalten kann. Dieser Motor, der aus einem winzigen Band spezieller Moleküle besteht, richtet sich bei Energiezufuhr aus, bewegt sich wie eine kleine Flosse und kann dadurch Objekte anstoßen. Er nutzt erstmals einen chemischen Treibstoff zur Energieversorgung.

Bis jetzt konnte die Umwandlung von chemischer Energie in Rotationsbewegung nur in biologischen Systemen beobachtet werden. Ur-Bakterien, die Archaea, nutzen das Molekül ATP, um ihre kleinen Flossen, die Flagellen, zu bewegen und sich fortzubewegen. Solche synthetischen Systeme gab es bisher nicht. Die neue Entwicklung könnte künftig in Nanorobotern verwendet werden, die zum Beispiel durch Blutbahnen schwimmen, um Tumorzellen zu finden.

Rotation durch chemischen Treibstoff

Das Team um Brigitte und Christine Kriebisch sowie Job Boekhoven, Professor für Supramolekulare Chemie, hat Bänder aus Peptiden entwickelt, die Mikrometer lang und nur wenige Nanometer breit sind. Wenn chemischer Treibstoff hinzugefügt wird, nehmen diese Bänder eine strukturierte Form an und rollen sich zu kleinen Röhren auf, wodurch sie wie ein Aufziehmotor zu rotieren beginnen. Dieser Prozess kann sogar live unter dem Mikroskop beobachtet werden.

Die Forschenden stellten fest, dass die Rotationsgeschwindigkeit der Bänder durch die Menge des zugeführten Treibstoffs reguliert werden kann. Außerdem kann die Richtung der Rotation – im oder gegen den Uhrzeigersinn – durch die Struktur der Molekülbausteine der Bänder beeinflusst werden. Die Ergebnisse dieser Forschung wurden im angesehenen Fachmagazin Chem veröffentlicht.

Stellenangebote im Bereich Energie & Umwelt

Energie & Umwelt Jobs
RX-WATERTEC GmbH-Firmenlogo
Ingenieur (m/w/d) der Fachrichtung Siedlungswasserwirtschaft RX-WATERTEC GmbH
Karlsruhe Zum Job 
naturenergie netze GmbH-Firmenlogo
Meister / Techniker - Steuerungstechnik (m/w/d) naturenergie netze GmbH
Rheinfelden, Donaueschingen Zum Job 
THOST Projektmanagement GmbH-Firmenlogo
Ingenieur*in (m/w/d) im Projektmanagement Bereich Energietechnik THOST Projektmanagement GmbH
verschiedene Standorte Zum Job 
ESWE Versorgungs AG-Firmenlogo
Asset Management & Transformationsplanung Fernwärmeversorgung (m/w/d) ESWE Versorgungs AG
Wiesbaden Zum Job 
Universität Bayreuth-Firmenlogo
W3-Professur für Technische Thermodynamik und Transportprozesse Universität Bayreuth
Bayreuth Zum Job 
Württembergische Landesbibliothek-Firmenlogo
Master bzw. Dipl.-Ing. (w/m/d) für das technische Gebäudemanagement Württembergische Landesbibliothek
Stuttgart Zum Job 
Wallfahrtsstadt Werl-Firmenlogo
Ingenieur/-in (m/w/d) mit dem Schwerpunkt "Umweltmanagement" (Dipl.-Ing. (FH) bzw. Bachelor) Wallfahrtsstadt Werl
BG ETEM-Firmenlogo
Ingenieur/in (m/w/d) als Referent/in für die Branche Feinmechanik BG ETEM
Profil Institut für Stoffwechselforschung GmbH-Firmenlogo
Head Site Management (w/m/d) Profil Institut für Stoffwechselforschung GmbH
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur (w/m/d) als Referent Arbeitssicherheit Die Autobahn GmbH des Bundes
SCORE GmbH-Firmenlogo
Projektingenieur (m/w/d) SCORE GmbH
Berliner Stadtreinigungsbetriebe (BSR)-Firmenlogo
Projektingenieurinnen / Projektingenieure oder Projektleitungen Bauwesen (w/m/d) Berliner Stadtreinigungsbetriebe (BSR)
Die Autobahn GmbH des Bundes Niederlassung Nord-Firmenlogo
Abteilungsleitung Umweltplanung (w/m/d) Die Autobahn GmbH des Bundes Niederlassung Nord
Bundesanstalt für Materialforschung und -prüfung-Firmenlogo
Promovierte*r wissenschaftliche*r Mitarbeiter*in (m/w/d) einer natur- oder ingenieurwissenschaftlichen Fachrichtung Bundesanstalt für Materialforschung und -prüfung
Berlin-Adlershof Zum Job 
Netzgesellschaft Potsdam GmbH-Firmenlogo
Projektingenieur (m/w/d) Energietechnik - Umspannwerke/Hochspannungsfreileitung - Netzgesellschaft Potsdam GmbH
Potsdam Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Spezialistin oder Spezialist Faunistik (w/m/d) für den Bereich Brückenersatzneubau Die Autobahn GmbH des Bundes
Hannover Zum Job 
Stadtwerke München GmbH-Firmenlogo
Vertragsmanager*in Großprojekte Mobilität (m/w/d) Stadtwerke München GmbH
München Zum Job 
naturenergie hochrhein AG-Firmenlogo
Projektentwickler kommunale Energielösungen (m/w/d) naturenergie hochrhein AG
Rheinfelden (Baden) Zum Job 
Stadtwerke Augsburg Energie GmbH-Firmenlogo
TGA-Planer*in / Ingenieur*in / Techniker*in (m/w/d) technische Gebäudeausrüstung Stadtwerke Augsburg Energie GmbH
Augsburg Zum Job 
Berliner Stadtreinigungsbetriebe (BSR)-Firmenlogo
Abteilungsleitung Deponien und Altablagerungen (w/m/d) Berliner Stadtreinigungsbetriebe (BSR)

„Unsere Arbeit zeigt einen neuen Mechanismus, bei dem chemische Energie auf Nanometerebene zur Antriebskraft für mikrometergroße Maschinen genutzt wird. Wir stellen uns vor, dass solche neuen Mechanismen den Weg zu autonomen Mikro- und Nanoskalemaschinen eröffnen“, schreiben die Forschenden in ihrem Artikel.

In Zusammenarbeit mit Prof. Matthias Rief, einem Experten für Molekulare Biophysik an der TUM, der sich mit modernen optischen Messmethoden beschäftigt, entdeckten die Forscher und Forscherinnen, dass die Bänder genügend Kraft aufbringen, um mikrometergroße Objekte zu bewegen. Die Messung dieser Kraft ist ein wichtiger Schritt für mögliche praktische Anwendungen.

Hoffnung auf Einsatz in Nanorobotern im Organismus

Wenn mehrere rotierende Bänder an einem zentralen Punkt kombiniert werden, können sie kleine „Mikro-Wanderer“ bilden, die sich auf Oberflächen fortbewegen können. Mit weiteren Verbesserungen könnten diese Mikro-Wanderer zukünftig für medizinische Anwendungen, wie den Transport von Medikamenten im Körper, eingesetzt werden. Derzeit ist der verwendete Treibstoff jedoch noch nicht geeignet, da er für den Organismus schädlich wäre.

Ein Beitrag von:

  • Alexandra Ilina

    Redakteurin beim VDI Verlag. Nach einem Journalistik-Studium an der TU-Dortmund und Volontariat ist sie seit mehreren Jahren als Social Media Managerin, Redakteurin und Buchautorin unterwegs.  Sie schreibt über Karriere und Technik.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.