Messverfahren für die Kernfusion 09.01.2014, 14:22 Uhr

Winzige Kameras sollen Plasmastrahlung in Fusionsreaktor messen

Neu entwickelte Sensoren sollen Plasmastrahlung im Fusionsfeuer des Forschungsreaktors ITER messen. Die sogenannten Bolometer werden in der Wand des Plasmagefäßes installiert und müssen Temperaturen von mehreren hundert Grad standhalten. Ein wichtiger technologischer Schritt auf dem Weg zur unerschöpflichen Energie.

Forscher im Plasmaraum der Garchinger Fusionsanlage Asdex. Hier finden erste Tests mit den Bolometern statt, die später im ITER-Reaktor zum Einsatz kommen sollen. 

Forscher im Plasmaraum der Garchinger Fusionsanlage Asdex. Hier finden erste Tests mit den Bolometern statt, die später im ITER-Reaktor zum Einsatz kommen sollen. 

Foto: Max-Planck-Institut für Plasmaphysik

Auf dem Weg zu neuen Energiequellen soll der französische ITER-Testreaktor den technischen Beweis dafür liefern, dass Kernfusion möglich ist. Er funktioniert nach dem sogenannten Tokamak-Prinzip. Dabei verschmelzen beispielsweise die Wasserstoffisotope Deuterium und Tritium, auch bekannt als schwerer und überschwerer Wasserstoff. Das entstehende heiße Plasma ist in einem ringförmigen Raum aus Magnetfeldspulen eingeschlossen, der ein Abkühlen verhindert. Die Fusion ist extrem effizient: Sie erzeugt zehnmal so viel Energie wie sie verbraucht.

Forscher wollen erstes Plasma im Jahr 2020 erzeugen. Doch um dieses Ziel zu erreichen, muss es zunächst möglich werden, die Strahlungsleistung des Plasmas zu berechnen. Denn nur wenn sie bekannt ist, lässt sich das Plasma regeln und die gewünschte Betriebsweise einstellen. Forscher des Max-Planck-Instituts für Plasmaphysik (IPP) in Garching bekamen deshalb den Auftrag, spezielle Kameras und ein Messverfahren zu entwickeln.

Die Forscher bauten winzige Kameras, sogenannte Bolometer. Basis sind Metallplättchen in der Größe einer Briefmarke. Sie absorbieren die Plasmastrahlung entlang einer engen Sichtlinie und erhitzen sich dabei. Unter jedem Plättchen befindet sich ein Leiter mit einem elektrischen Widerstand. Der ändert sich mit der Temperatur und misst so die Strahlungsleistung.

Ein zugehöriges Messverfahren aus Garching soll die vom ITER-Plasma abgegebene Wärme- und Lichtstrahlung im Infrarot- und Röntgenbereich analysieren. Gibt es genügend Bolometer, lassen sich Strahlungsintensitäten bestimmten Punkten im Plasma zuordnen. So erfährt man exakt, welche Stelle im Plasma welche Leistung ausgesandt hat.

Stellenangebote im Bereich Energie & Umwelt

Energie & Umwelt Jobs
Valmet GmbH-Firmenlogo
Sales and Service Manager in the area of Energy, Recovery and Environmental Services (m/f/d) Valmet GmbH
Darmstadt, Langenfeld, Magdeburg, Oberhaching, Berlin Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Straßenplaner/in (m/w/d) Die Autobahn GmbH des Bundes
Heilbronn Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Projektleitung (m/w/d) Abfall Die Autobahn GmbH des Bundes
Heilbronn Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Teamleitung (w/m/d) Verkehrsbehörde Die Autobahn GmbH des Bundes
Stuttgart Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur/in (m/w/d) für Boden-, Baustoff- und Abfallmanagement Die Autobahn GmbH des Bundes
Freiburg, Donaueschingen Zum Job 
ANDRITZ Separation GmbH-Firmenlogo
Qualitätsingenieur (m/w/d) Schwerpunkt HSE ANDRITZ Separation GmbH
Vierkirchen Zum Job 
Berliner Stadtreinigungsbetriebe (BSR)-Firmenlogo
Projektleiterinnen / Projektleiter Energiewirtschaft (w/m/d) Berliner Stadtreinigungsbetriebe (BSR)
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur Immissionsschutz (m/w/d) Die Autobahn GmbH des Bundes
Hohen Neuendorf Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Abfallexperte Bau/Stoffstrommanager (m/w/d) Die Autobahn GmbH des Bundes
Stuttgart Zum Job 
Stadtwerke München GmbH-Firmenlogo
(Senior) Expert*in Verkehrssteuerung Großprojekte Mobilität (m/w/d) Stadtwerke München GmbH
München Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieurgeologe/in als Sachbearbeiter/in Abfall (w/m/d) Die Autobahn GmbH des Bundes
Hannover Zum Job 
VIVAVIS AG-Firmenlogo
Sales Manager (m/w/d) Smart Grid Operation Plattform VIVAVIS AG
Ettlingen Zum Job 
VIVAVIS AG-Firmenlogo
Partner-Manager Metering (m/w/d) VIVAVIS AG
Koblenz, Home-Office Zum Job 
Berliner Stadtreinigungsbetriebe (BSR)-Firmenlogo
Projektingenieurin / Projektingenieur oder Projektleitung (w/m/d) Verfahrenstechnik Berliner Stadtreinigungsbetriebe (BSR)
Stadt Heidelberg-Firmenlogo
Ingenieurin / Ingenieur oder Naturwissenschaftlerin / Naturwissenschaftler für den Gewässerschutz (m/w/d) Stadt Heidelberg
Heidelberg Zum Job 
Stadtwerke Bayreuth Holding GmbH-Firmenlogo
Referent Kommunale Wärmeplanung (m/w/d) Stadtwerke Bayreuth Holding GmbH
Bayreuth Zum Job 
Helmholtz-Zentrum Berlin für Materialien und Energie-Firmenlogo
Ingenieur (m/w/d) Projektkommunikation und -koordination Rückbau BER II Helmholtz-Zentrum Berlin für Materialien und Energie
Bundesanstalt für Materialforschung und -prüfung-Firmenlogo
Technische*r Mitarbeiter*in bzw. Ingenieur*in (m/w/d) der Fachrichtung Chemie, Physik, Verfahrenstechnik, Umweltingenieurwissenschaften oder vergleichbar Bundesanstalt für Materialforschung und -prüfung
Berlin-Steglitz Zum Job 
Abwasserverband Fulda-Firmenlogo
Ingenieur | Master (m/w/d) Wasserwirtschaft | Umwelt | Tiefbau Abwasserverband Fulda
Regierungspräsidium Freiburg-Firmenlogo
Bachelor / Diplom (FH) Bauingenieurwesen, Infrastruktur, Umweltingenieurwesen oder vergleichbar Regierungspräsidium Freiburg
Offenburg Zum Job 

Messungen im Fusionsfeuer des Forschungsreaktors ITER

Die Grundlage für die Bolometer haben die Forscher schon in anderen Projekten gelegt. Doch im Forschungsreaktor ITER sind die Voraussetzungen extremer. Wenn Forscher dort ein brennendes Fusionsfeuer erzeugen, müssen die Bolometer aufprallenden Fusionsneutronen standhalten. Dann wird sich zeigen, ob sie auch bei hohen Temperaturen von bis zu 450 Grad Celsius zuverlässig arbeiten.

Die Bolometer durchkreuzen das Plasma mit über 500 Sichtlinien. Somit wird es möglich, die Strahlungsleistung an verschiedenen Stellen des Plasmas zu berechnen. 

Die Bolometer durchkreuzen das Plasma mit über 500 Sichtlinien. Somit wird es möglich, die Strahlungsleistung an verschiedenen Stellen des Plasmas zu berechnen. 

Quelle: Max-Planck-Institut für Plasmaphysik

Die Bolometer durchkreuzen verschiedene Querschnittsebenen des ITER-Plasmas mit 500 Sichtlinien und beobachten es so aus allen Winkeln. Die Absorber-Plättchen, die diese Strahlung auffangen, liegen tief in der Wand des Plasmagefäßes am Ende langer Kanäle, die von engen Blenden abgedeckt sind – je kleiner der Sichtwinkel ist, den der einzelne Detektor abtastet, desto genauer wird das Plasma abgebildet.

Roboterteststand in Garching prüft Streulicht und Reflexionen der Kameras

Um zu prüfen, wie genau das Messverfahren wirklich ist, haben Wissenschaftler in Garching bereits einen Roboterteststand aufgebaut und im Plasmagefäß der Garchinger Fusionsanlage ASDEX Upgrade geprüft. Dabei wurde ein Laserstrahl aus allen Richtungen auf den Eintrittsspalt eines Bolometers gerichtet. Die Messergebnisse halfen, den Blenden-Entwurf so zu verbessern, dass Streulicht und Reflexionen in der Kamera weitgehend unterdrückt werden.

In vier Jahren soll das Messverfahren des IPP in den ITER-Testreaktor integriert werden. In dieser Zeit wollen die Wissenschaftler noch vieles an Optik, Aufbau, Material und Elektronik optimieren. Das fördert die europäische ITER-Agentur Fusion for Energy mit 4,8 Millionen Euro. 

Ein Beitrag von:

  • Andrea Ziech

    Redakteurin Andrea Ziech schreibt über Rekorde und Techniknews. Darüber hinaus ist sie als Kommunikationsexpertin tätig.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.