Datensicherheit 04.10.2019, 07:00 Uhr

Algorithmus entdeckt gefälschte Passbilder

Systeme zur automatisierten Gesichtserkennung nehmen zu. Fälschungssicher sind sie jedoch nicht. Forscher haben nun einen Weg gefunden, zumindest Dokumente herauszufiltern, die auf eine spezielle Art manipuliert wurden – mit dem sogenannten Morphing.

Morphing-Beispiel

Zwei reale Bilder (links und rechts) sind zu einem digitalen Bild verschmolzen worden (in der Mitte).

Foto: Fraunhofer HHI

Früher war die Identifizierung von Menschen eine klare Sache: Beispielsweise bei der Kontrolle am Flughafen warf der Beamte einen Blick auf das Foto im Ausweis und schaute anschließend der vor ihm stehenden Person streng ins Gesicht. Dabei stellte sich häufig heraus, dass ein Bild, das schon ein paar Jahre alt war, die Realität nicht mehr unbedingt exakt wiedergab. Ein paar Kilo mehr, ein Bart oder eine neue Brille verfälschten den Eindruck. Anders sieht es mit biometrischen Daten aus. Liegen sie als digitale Version im Reisepass vor, können die Mitarbeiter an der Grenzkontrolle ein Foto der betreffenden Person anfertigen, und ein spezielles Computerprogramm wertet die Gemeinsamkeiten direkt vor Ort aus. Diese Methode ist sehr aussagekräftig. Denn relevante Messpunkte, etwa der Augenabstand, verändern sich auch nicht durch eine Diät.

Der digitale Abgleich bringt allerdings neue Probleme mit sich. Eines davon ist das Morphing. Genau das will ein Forscherteam unterbinden. Unter anderem stammen die Wissenschaftler vom Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK und vom Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut (HHI).

Morphing: Aus zwei echten Bildern entsteht eine Fälschung

Die automatisierte Gesichtskontrolle wird in der Praxis immer häufiger eingesetzt, und das nicht nur bei gezielten Personenkontrollen. Über automatische Scans an öffentlichen Plätzen sollen zum Beispiele Kriminelle flächendeckend enttarnt werden, während ähnliche Programme im kleineren Rahmen das Gegenteil erreichen sollen, nämlich persönliche Daten zu sichern – die automatische Gesichtserkennung wird auch genutzt, um Smartphones zu entsperren.

All das baut auf dem Prinzip auf, dass die biometrischen Daten einer Person absolut individuell sind. Das ist zwar tatsächlich der Fall, die Software greift für den Abgleich aber nur einzelne Punkte heraus. Zudem besteht die Möglichkeit, diese digital zu manipulieren. Vor allem das Morphing ist in dieser Hinsicht problematisch. Vereinfacht gesagt, werden dabei zwei Gesichtsbilder zu einem verschmolzen. Es enthält dann die Eigenschaften beider Fotos. In der Praxis heißt das: Zwei Personen können den Ausweis verwenden, ohne dass die automatische Gesichtserkennung Alarm schlägt. Ein Krimineller kann sich damit im Grunde genommen mit dem Gesicht eines unbescholtenen Bürgers ausstatten, zumindest in seinen Dokumenten.

Stellenangebote im Bereich IT/TK-Projektmanagement

IT/TK-Projektmanagement Jobs
CS CLEAN SOLUTIONS GmbH-Firmenlogo
Mitarbeiter für die Steuerungstechnik Software (m/w/d) CS CLEAN SOLUTIONS GmbH
Ismaning bei München Zum Job 
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
FlowChief GmbH-Firmenlogo
Techniker:in Automatisierung (SCADA) (m/w/d) FlowChief GmbH
Wendelstein Zum Job 
Wirtgen GmbH-Firmenlogo
Software-Ingenieur (m/w/d) Elektrotechnik im Bereich Steuerungssoftware für mobile Arbeitsmaschinen Wirtgen GmbH
Windhagen Zum Job 
Hochschule Osnabrück-Firmenlogo
Tandem-Professur Robotik, Data Science and AI, Digitalisierte Wertschöpfungsprozesse Hochschule Osnabrück
Osnabrück, Lingen Zum Job 
Hochschule für Technik und Wirtschaft Berlin-Firmenlogo
Professur (W2) | auf Lebenszeit Fachgebiet Rechnerarchitekturen und Rechnersysteme Hochschule für Technik und Wirtschaft Berlin
Energie und Wasser Potsdam GmbH-Firmenlogo
Geoinformatiker (m/w/d) / Vermessungsingenieur (m/w/d) als Projektleiter (m/w/d) GIS - Fachanwendungen Energie und Wasser Potsdam GmbH
Potsdam Zum Job 
Frankfurt University of Applied Sciences-Firmenlogo
Professur "Software Engineering - Moderne Verfahren" (w/m/d) Frankfurt University of Applied Sciences
Frankfurt am Main Zum Job 
Niedersächsische Landesbehörde für Straßenbau und Verkehr-Firmenlogo
BIM-Manager (m/w/d) für Bauprojekte Niedersächsische Landesbehörde für Straßenbau und Verkehr
Hannover Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Fachingenieur (w/m/d) BIM Die Autobahn GmbH des Bundes
Technische Hochschule Deggendorf-Firmenlogo
Forschungsprofessur oder Nachwuchsprofessur (m/w/d) Industrielle Robotik Technische Hochschule Deggendorf
Fresenius Kabi Deutschland GmbH-Firmenlogo
Projekt IT-Ingenieur (m/w/d) Fresenius Kabi Deutschland GmbH
Friedberg Zum Job 
Mercer Stendal GmbH-Firmenlogo
Betriebstechniker (m/w/d) Prozessleittechnik Mercer Stendal GmbH
Arneburg Zum Job 
Wirtgen GmbH-Firmenlogo
Project Manager Product Lifecycle Management (m/w/d) Wirtgen GmbH
Windhagen Zum Job 
Hochschule Osnabrück-Firmenlogo
Wissenschaftl. Mitarbeiter*in in der Talentakademie "Smart Factory & Products" Hochschule Osnabrück
Osnabrück Zum Job 
NORDEX GROUP-Firmenlogo
SCADA Projektingenieur (m/w/d) NORDEX GROUP
Hamburg, Rostock Zum Job 
Westfälische Hochschule-Firmenlogo
Professur Künstliche Intelligenz und Industrielle Automation (W2) Westfälische Hochschule
Gelsenkirchen Zum Job 
Hochschule für Technik und Wirtschaft Berlin-Firmenlogo
Professor (W2) | Permanent Computer Architecture and Computer Systems Hochschule für Technik und Wirtschaft Berlin
Frankfurt University of Applied Sciences-Firmenlogo
Professur "Vernetzte Eingebettete Systeme" (w/m/d) Frankfurt University of Applied Sciences
Frankfurt am Main Zum Job 

Neuronale Netze finden digitale Abweichungen

Das Morphing ist ohne entsprechende Software nicht unbedingt zu erkennen. Die Täter können also schon beim regulären Antrag auf einen Ausweis ein manipuliertes Bild abgeben – und erhalten ein echtes Dokument mit gefälschtem Foto. Die vermeintliche zusätzliche Sicherheitsstufe der automatischen Gesichtserkennung ist bei solch einem Vorgehen also sehr problematisch, weil die Beamten sich tendenziell auf sie verlassen. Im Projekt ANANAS, kurz für „Anomalie-Erkennung zur Verhinderung von Angriffen auf gesichtsbildbasierte Authentifikationssysteme“, versuchen die beteiligten Wissenschaftler, solche Schwierigkeiten in den Griff zu bekommen. Dafür wenden sie maschinelles Lernen an, insbesondere arbeiten sie mit komplexen neuronalen Netzen, die aus zahlreichen Ebenen bestehen, die in vielschichtigen Strukturen miteinander verknüpft sind. Sie sollen die Neuronenstruktur des Gehirns nachahmen und sind über mathematische Berechnungseinheiten miteinander verbunden.

Diese neuronalen Netze haben die Forscher „trainiert“, indem sie die Systeme zunächst mit zahlreichen realen und gemorphten Gesichtsbildern gefüttert haben. Durch den Algorithmus wurden dabei Muster erkennbar, sodass die Netze jetzt, laut Aussage der Forscher, in der Lage sind, manipulierte Bilder anhand der dadurch entstehenden Veränderungen zu erkennen, „speziell in semantischen Bereichen wie in Gesichtsmerkmalen oder Glanzlichtern in den Augen“, sagt Peter Eisert, Abteilungsleiter Vision & Imaging Technologies am Fraunhofer HHI.

Mit künstlicher Intelligenz Kriminellen zuvorkommen

Mit den Ergebnissen der Testläufe waren die Forscher zufrieden: In über 90% der Fälle habe die Software die gemorphten Bilder gefunden. Zufrieden waren die Wissenschaftler damit jedoch noch nicht: „Das Problem ist vielmehr, dass man nicht weiß, wie das neuronale Netz die Entscheidung getroffen hat“, sagt Eisert. Mit extra entwickelten Algorithmen will sein Team daher auch herausfinden, welche Regionen im Gesichtsbild für die Entscheidung relevant sind. Das könnte dabei helfen, Morphing noch sicherer zu identifizieren. Häufig liefern beispielsweise die Augen einen Hinweis darauf, ob das Bild echt ist oder gefälscht.

Abgeschlossen sind diese Forschungen allerdings noch lange nicht. „Die Kriminellen können auf immer ausgefeiltere Angriffsmethoden zurückgreifen, zum Beispiel auf Verfahren aus dem Bereich der künstlichen Intelligenz, die komplett künstliche Gesichtsbilder erzeugen. Indem wir unsere neuronalen Netze optimieren, versuchen wir, den Fälschern einen Schritt voraus zu sein und zukünftige Attacken zu identifizieren“, sagt Eisert. Sein Ziel ist es, die entwickelte Software in bestehende Gesichtserkennungssysteme an Grenzkontrollen zu integrieren.

Ein Beitrag von:

  • Nicole Lücke

    Nicole Lücke macht Wissenschaftsjournalismus für Forschungszentren und Hochschulen, berichtet von medizinischen Fachkongressen und betreut Kundenmagazine für Energieversorger. Sie ist Gesellschafterin von Content Qualitäten. Ihre Themen: Energie, Technik, Nachhaltigkeit, Medizin/Medizintechnik.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.