Alte japanische Papierfaltkunst soll drahtlose Übertragungen verbessern
Ist das die Zukunft der drahtlosen Kommunikation? Kirigami-Technik und MXene-Nanomaterialien ermöglichen die Entwicklung flexibler und rekonfigurierbarer Antennen.
Die drahtlose Kommunikation ist ein wesentlicher Bestandteil moderner Technologien. Doch um sie weiterzuentwickeln, sind neue, flexible und effiziente Antennen nötig. Eine überraschende Lösung könnte dabei eine alte japanische Technik sein: Kirigami. Diese Kunst des Schneidens und Faltens von Papier wird nun von Forschenden der University of British Columbia und der Drexel University genutzt, um hochleistungsfähige, rekonfigurierbare Antennen herzustellen.
Inhaltsverzeichnis
Kirigami als Vorbild
Kirigami, eine Variante des bekannteren Origami, geht über das einfache Falten von Papier hinaus. Durch das Schneiden und Falten entstehen dreidimensionale Strukturen, die erstaunlich stabil und flexibel sind.
Diese Technik inspirierte die Forschenden dazu, leitfähige MXene-Nanomaterialien auf ein flexibles Substrat zu drucken und diese mithilfe von Kirigami in eine komplexe dreidimensionale Struktur zu verwandeln. Das Ergebnis: eine flexible, leichte Mikrowellenantenne, deren Übertragungsfrequenz durch einfaches Ziehen oder Zusammendrücken verändert werden kann.
Papierfaltkunst trifft Nanomaterial
MXene sind zweidimensionale Materialien, die eine hohe Leitfähigkeit besitzen und in den letzten Jahren verstärkt in der Forschung zur drahtlosen Kommunikation, Energieübertragung und sogar in der Biofiltration eingesetzt wurden. In dieser neuen Anwendung dienen sie als leitfähige Tinte, die auf ein elastisches Substrat aufgetragen wird.
Die Kombination aus Kirigami-Designs und MXene-Materialien ermöglicht es, Antennen zu bauen, die nicht nur langlebig, sondern auch flexibel und rekonfigurierbar sind. Dies eröffnet zahlreiche Möglichkeiten in Bereichen wie der Soft Robotics und der Luft- und Raumfahrt, wo Antennen flexiblen und wechselnden Anforderungen standhalten müssen.
Einfache Herstellung für komplexe Anwendungen
Die Herstellung dieser Antennen ist ebenso einfach wie genial. Zunächst wird eine Acetatfolie mit MXene-Tinte beschichtet. Anschließend werden durch parallele Schnitte im Rahmen der Kirigami-Technik dreidimensionale Formen erzeugt, die aus der zweidimensionalen Oberfläche herausspringen.
Diese Formen können durch Zug oder Druck an den Rändern der Folie angepasst werden, um die Übertragungsfrequenz der Antenne zu ändern. Diese Art der Anpassung ist besonders wertvoll, da sie die Notwendigkeit von komplexen Schaltkreisen und elektronischen Steuerungen umgeht, die herkömmliche Antennen oft anfällig für Fehlfunktionen machen.
Perfekt für den Einsatz in Robotern oder Satelliten
Die Flexibilität dieser Kirigami-Antennen macht sie besonders geeignet für den Einsatz in beweglichen Systemen wie Robotern oder Satelliten. Ihre geringe Größe und ihr leichtes Gewicht tragen dazu bei, dass sie in einer Vielzahl von Anwendungsbereichen eingesetzt werden können.
Zudem sind sie nicht nur für drahtlose Kommunikation nützlich, sondern könnten auch als Sensoren zur Überwachung von Bauwerken oder Infrastrukturen dienen. Beispielsweise verschob sich die von einem Resonator erzeugte Frequenz um 400 MHz, als seine Form unter Zug verändert wurde – ein Zeichen dafür, dass diese Technik potenziell zur Dehnungsmessung in Bauwerken verwendet werden könnte.
So sind die Zukunftsaussichten
Die Forschenden betonen, dass dies erst der Anfang ist. In zukünftigen Projekten sollen neue Materialien und Kirigami-Designs untersucht werden, um die Leistung der Antennen weiter zu optimieren. Die Fähigkeit, durch einfache mechanische Anpassungen die Leistung von drahtlosen Übertragungssystemen zu steuern, könnte die Kommunikationstechnologien grundlegend verändern.
Besonders in Bereichen wie der 5G-Technologie und darüber hinaus eröffnen diese Antennen laut Forschungsteam eine Vielzahl von Möglichkeiten. Zudem können die flexiblen Antennen, wie bereits geschrieben, auch in der Luft- und Raumfahrt und die der Robotik Anwendung finden.
Ein Beitrag von: