ETH Zürich entwickelt Roboterhaut, die fühlen kann
Robotik-Forscher der ETH Zürich haben neuartige Tastsensoren entwickelt. Besonders in einem Punkt unterscheiden sie sich deutlich von herkömmlichen Sensoren, verspricht die ETH.
Die Seife kann ein Biest sein. Wenn man nicht aufpasst, flutscht sie wie ein Aal aus der Hand. So ein nasses Stück Seife ist bisweilen schwer zu packen. Mehr als 17.000 sogenannte Fühlkörperchen in unseren Handflächen und Dutzende Sehnen sorgen dafür, dass es uns trotzdem meistens gelingt.
Allein diese Zahl zeigt, wie komplex ein solch alltäglicher Griff eigentlich ist. Umso größer ist die Herausforderung, Roboterhände so zu konstruieren, dass auch sie zerbrechliche oder rutschige Gegenstände greifen können, ohne sie fallen zu lassen oder zu zerquetschen.
Robotik: Forscher der ETH Zürich entwickeln neuartige Sensorhaut
Robotikforscher der ETH Zürich haben jetzt einen Sensor entwickelt, der Roboter-Greifarme mit einer Art Tastsinn ausstatten soll – gewissermaßen eine Art Roboterhaut. Der Sensor besteht aus einer elastischen Silikonschicht, die mit farbigen Mikrokügelchen aus Kunststoff gespickt ist, sowie einer Kamera. Das Prinzip: Wenn der Sensor einen Gegenstand berührt, verformt sich die Silikonhaut. Entsprechend verändert sich auch die Anordnung der Mikrokugeln.
Die Kamera auf der Unterseite des Sensors registriert diese Änderung des Kugel-Musters daraus kann dann errechnet werden, welche Kräfte gerade auf den Sensor einwirken.
“Herkömmliche Kraftsensoren registrieren die einwirkende Kraft nur an einem einzigen Punkt. Wir können mit unserer Roboterhaut hingegen mehrere auf die Sensorfläche einwirkende Kräfte unterscheiden und diese hochauflösend und präzise bestimmen”, erklärt Carlo Sferrazza.
Der Doktorand ist Teil der Forschungsgruppe, die den neuartigen Sensor an der ETH Zürich entwickelt.
ETH Zürich: Unterschied zu herkömmlichen Sensoren
Die Roboterhaut kann zudem die Richtung bestimmen, aus der die Kraft auf den Sensor einwirkt. Sprich: Nicht nur die senkrecht auf den Sensor wirkenden Druckkräfte werden gemessen, sondern auch die Scherbelastung.
Die Forscher ließen den Sensor mehrere Tausend unterschiedliche Gegenstände berühren. Mithilfe von maschinellem Lernen gelang es ihnen, diese Berührungen präzise mit den Veränderungen des Kügelchen-Musters in Verbindung zu bringen.
Die Entwicklung steht noch am Anfang: Der aktuelle Prototyp, den die Forscher der ETH Zürich bislang gebaut haben, ist 1,7 Zentimeter dick und hat eine Sensorfläche von 5 Quadratzentimetern. Mittelfristig soll es aber auch größere und gleichzeitig dünnere Messflächen geben, die mehrere Kameras nutzen. Diese Sensoren sollen dann auch Gegenstände mit komplexen Formen erkennen können.
Neue Sensoren auch im Radsport und Virtual Reality einsetzbar
Die Anwendungsgebiete des neuen Sensors sind mannigfaltig, heißt es bei der ETH Zürich. So können damit einerseits Robotergreifarme in Industrie und Forschung ausgerüstet werden. Diese würden dann zum Beispiel erkennen, ob ihnen ein Objekt zu entgleiten droht – und ihre Kraft entsprechend anpassen.
Andererseits können die Sensoren zum Beispiel als Wearables Sportlern helfen: Läufer könnten damit die Kraftübertragung auf ihre Schuhe beim Joggen messen oder Radsportler die Übertragung auf die Pedale. Ein weiteres Feld: Virtual Reality. Die Sensorhaut könnte künftig wichtige Informationen bei der Entwicklung von Berührungsfeedback geben, etwa bei Virtual Reality-Spielen.
Lesen Sie auch:
Ein Beitrag von: