Funk bringt mehr Flexibilität in die Automation
Mit der drahtlosen Fabrikvernetzung befasste sich ein Themenblock des Kongresses auf der Fachmesse SPS/IPC/Drives, Nürnberg. Wie die Experten dort aufzeigten, kommt es dabei auf die richtige Auswahl des Netzes an – das gewählte Frequenzband und die Topologie entscheiden über Qualität und Zuverlässigkeit der Funkverbindung.
Industrieanwendungen per Funk zu verbinden und zu steuern bringt Flexibilität ohne „Kabelsalat“ und -verschleiß. Diese Freiheit wird allerdings eingeschränkt, denn genutzt werden können nur die wenigen von der Regulierung vorgegebenen, begrenzten Frequenzbänder, gaben Guntram Scheible von ABB Stotz Kontakt, Heidelberg, und Bernd Kärcher von Festo, Esslingen, zu bedenken. Das Team befasste sich auf dem SPS/IPC/Drive-Kongress mit neuen Funktechnologien für die Industrieautomation.
Die Fabrikautomation erfordert bekanntlich in vielen Fällen Reaktionszeiten kleiner als 10 ms und dies bei Maschinen mit mehr als 100 Sensoren/Aktoren oder E/A-Geräten. Die Profibus-Nutzerorganisation (PNO) hat hierfür die Spezifikation einer auf der WISA-Technologie von ABB basierenden Funklösung erarbeitet. Vorteile beim industriellen Einsatz dieses WSAN-FA genannten Wireless Sensor Actuator Network seien: Eine einfach zu skalierende Zahl von Funkknoten, es ist ereignisgesteuert und verfügt über eine hohe spektrale Effizienz sowie einen damit verbunden geringstmöglichen Ressourcenverbrauch im ISM-Band. Die begrenzte Reichweite gestatte den praktisch unbegrenzten Einsatz vieler solcher parallelen Systeme in einer Fabrikhalle, so Scheible. Dadurch lasse sich WSAN in Fertigungszellen und Montagelinien mit zahlreichen Geräten und Sensoren/ Aktoren auf bewegten Anlagenteilen einsetzen: Etwa bei Elektrohängebahnen, z. B. beim Transport von Karosserien in der Automobilproduktion, für fahrerlose Transportsysteme, Regalbediengeräte oder Maschinen mit beweglichen Komponenten, wie beispielsweise Drahtwickelmaschinen.
Eine Bluetooth-Funkstrecke für die Prozessautomatisierung wurde von Jana Krimmling von IHP, Frankfurt/Oder, und Matthias Mahlig von Lesswire in einem Berliner Klärwerk getestet. Dazu wurden von ihnen sowohl neue, auf Bluetooth basierende Hardwarekomponenten mit integrierten Mikro-Controllern entwickelt als auch existierende Standardkomponenten untersucht. Ziel war es, die Funkkomponenten gleich in den Sensor zu integrieren. Das von Lesswire entwickelte Sensor-Board mit Onboard-Bluetooth-Modul und einem ARM-Mikro-Controller erzielte brauchbare Versuchsergebnisse. „Die mit den Standard-Bluetooth-Komponenten aufgebaute Teststrecke im Klärwerk verrichtet seit Monaten zuverlässig ihren Dienst ohne Ausfall,“ so Krimmling. Die Verbindung sei selbst unter extremen äußeren Witterungsbedingungen stabil.
Dass auch 5-GHz-Industrie-WLANs unterbrechungsfrei in Industriehallen und im Freien arbeiten, zeigte Heinrich Merz von ads-tec, Leinfelden-Echterdingen, anlässlich des Kongresses. In diesem Band stehen 16 bis 19 überlappungsfreie Kanäle zur Verfügung. Access Points lassen sich dicht nebeneinander platzieren, ohne sich zu stören. „Durch die vielen parallel nutzbaren Kanäle ist das 5-GHz-Band die ideale Plattform für industrielle WLAN-Lösungen,“ so Merz. Er führte als Praxisbeispiel für den Einsatz von 5-GHz-Netzen eine Logistikhalle aus Beton mit Metallwänden an, in der es neben Stahlregalen mit ständig wechselnder Belegung, Lagergut teils mit dämpfenden, teils mit reflektierenden Eigenschaften gibt. Vier Stapler und 50 Kommissionierfahrzeuge, die mit Fahrzeugterminals ausgestattet sind, sollen hier miteinander kommunizieren.
Die Halle muss dabei durch WLAN so ausgeleuchtet werden, dass ein Fahrzeug an jeder Position eine optimale Netzversorgung hat. Da das Gebäude während der WLAN-Planung noch nicht erstellt war, wurde, so Merz, zunächst eine Simulation durchgeführt. Die Entscheidung fiel für ein 5-GHz-WLAN: Pro Regalgasse wurde ein Access Point montiert, der jeweils per TPC (Transmission Power Control) von der Sendeleistung so eingeregelt wurde, dass er seinen Bereich zuverlässig versorgt und benachbarte Verbindungen nicht stört.
Hakam Saffour vom Institut für Elektronik an der Universität Magdeburg wiederum setzte sich in Nürnberg mit den technischen Herausforderungen beim Aufbau eines drahtlosen Kommunikationsnetzwerkes für Windenergieanlagen auseinander: Ein solches Netz kann zum Austausch von Daten über Windgeschwindigkeit und -richtung, Anstellwinkel, Temperatur sowie Luftfeuchtigkeit mit der Hauptempfängerstation dienen. „Ziel der Messung dieser Parameter und deren Übertragung via drahtloser Funkverbindung ist es, den Status der Windkraftanlage und die Bedingungen für die weitere Optimierung und Steuerung zu überwachen,“ schilderte Saffour. Das Condition Monitoring dient aber auch zu Wartungszwecken und damit einer Minimierung von Stillstandzeiten. Dafür ist ein universelles Überwachungssystem wichtig, das auf jeder installierten Windturbine funktioniert – unabhängig von Modell oder Marke.
Auf einer der größten am Markt verfügbaren Anlage, einer E126 von Enercon haben Saffour und sein Team geeignete Funkprotokolle und Topologien für solche Anwendungen untersucht: Die Entscheidung fiel schließlich für ein vermaschtes Netz (mesh), das gegenüber einer sternförmigen Topologie zahlreiche Vorteile biete, so Saffour: Ein Mesh-Netzwerk ermögliche es jedem Knoten mit einem anderen Knoten zu kommunizieren. Und das sei selbst dann noch möglich, wenn ein Knoten ausfällt oder eine Verbindung in ihrer Qualität nachlässt. Neben dieser Redundanz erlaubt es die Skalierbarkeit, die Reichweite des Mesh-Netzes einfach durch das Einfügen eines zusätzlichen Knoten zu erweitern. Aufgrund der Multi-Hop-Kommunikationstechnik wird dies allerdings durch eine höhere Leistungsaufnahme erkauft, gab Saffour zu bedenken. Die beiden Experten zeigten, dass das Mesh-Netzwerk sehr zuverlässig funktioniert, da es in der Regel immer mehrere Wege zwischen Datenquelle und -ziel gibt. E. LANGE/KIP
Ein Beitrag von: