Neuronale Netze 21.06.2019, 07:02 Uhr

Künstliche Intelligenz verbessert Wettervorhersagen

Die Meteorologie hat nicht nur für die Landwirtschaft eine hohe Relevanz. Auch viele Wirtschaftszweige profitieren von zuverlässigen Wetterdaten – Forschern des KIT ist es jetzt gelungen, die Vorhersagemethoden zu verbessern.

Foto Wolken am Himmel

Am Himmel braut sich etwas zusammen. Dennoch ist es schwer, exakt zu berechnen, wann es regnet.

Foto: Mike Adams / Panthermedia.net

Die Entstehung des Wetters ist komplex. Fast schon sprichwörtlich ist der Schmetterling, dessen Flügelschlag eine Kette von Ereignissen auslöst – die am anderen Ende des Globus zu einem Wetterumschwung führen können. Das Grundproblem ist die hohe Anzahl an Faktoren, die sich zudem gegenseitig beeinflussen, unter anderem Temperatur, Luftfeuchtigkeit, Luftdruck und sich bewegende Luftmassen. Auch die Sonneneinstrahlung und die Meeresströmungen müssen in die Berechnungen für Wettervorhersagen einfließen. Die Aufgabe der Meteorologen ist es, die wahrscheinlichste Entwicklung aus all diesen Komponenten herauszufiltern. Wissenschaftler aus Meteorologie und Mathematik des Karlsruher Instituts für Technologie (KIT) haben eine Methode entwickelt, um Fehler in solchen Prognosen besser korrigieren zu können. Als Basis dient künstliche Intelligenz.

50 Szenarien für jede Messgröße

Das Prinzip der Wettervorhersagen ist einfach: Die Forscher messen zahlreiche Faktoren, die den aktuellen Zustand der Atmosphäre wiedergeben. Auf dieser Grundlage simulieren sie mögliche Szenarien, indem sie in ihrem Modell beispielsweise die Temperatur oder die Luftfeuchtigkeit verändern und die daraus resultierenden Entwicklungen berechnen. Dieses Verfahren ist sehr aufwendig. Denn für jede Messgröße werden etwa 50 Szenarien durchgespielt. „Ähneln sich die Ergebnisse, deutet das darauf hin, dass eine Prognose mit diesen Werten relativ sicher und der Zustand der Atmosphäre in diesem Bereich stabil und gut vorhersagbar ist“, sagt Peter Knippertz vom Institut für Meteorologie und Klimaforschung des KIT.

Wetterprognosen beschreiben also Wahrscheinlichkeiten. Das ist bekannt. Doch sie sind mit einem weiteren Problem behaftet: Es gibt systematische Unsicherheiten, die zum Teil die Ergebnisse verzerren. „Die Computerszenarien können manche physikalische Zusammenhänge nicht in der notwendigen Detailtiefe oder räumlichen Auflösung abbilden“, sagt Sebastian Lerch vom Institut für Stochastik des KIT. Ein gutes Beispiel dafür ist die Vorhersage von Temperaturen. An manchen Orten fallen die Prognosen grundsätzlich zu hoch aus, an anderen hingegen zu niedrig. Denn in den Modellen werden lokale, teils zeitlich variable Abweichungen nicht eingezogen. Im Anschluss an die Simulation sind daher zum einen die Experten gefragt, die mit ihrer Erfahrung und ihrem Hintergrundwissen die Ergebnisse interpretieren müssen. Zum anderen werden zusätzliche statistische Verfahren eingesetzt, um die Wahrscheinlichkeit zu erhöhen, dass die Prognosen tatsächlich eintreten.

Das Netzwerk speichert alle Informationen und lernt daraus

Die Forschergruppe hat einen neuen Ansatz entwickelt. Als Basis dienen neuronale Netze, also Computerprogramme, die Informationen nach dem Vorbild des Gehirns verarbeiten. Die Mathematiker trainieren diesem Netzwerk an, bestimmte Daten optimal zu verarbeiten. Dabei handelt es sich um ein „lernendes“ Netzwerk, also um künstliche Intelligenz. Anders gesagt: Alle Informationen aus der Trainingsphase werden gespeichert und für spätere Wettervorhersagen eingesetzt. So sollte es möglich sein, die Prognosen kontinuierlich zu verbessern – inklusive lokaler Faktoren, die ebenfalls in den Speicher wandern.

Stellenangebote im Bereich IT/TK-Projektmanagement

IT/TK-Projektmanagement Jobs
Tagueri AG-Firmenlogo
Consultant OTA - Connected Cars (m/w/d)* Tagueri AG
Stuttgart Zum Job 
WIRTGEN GmbH-Firmenlogo
System- und Softwarearchitekt (m/w/d) - mobile Arbeitsmaschinen WIRTGEN GmbH
Windhagen (Raum Köln/Bonn) Zum Job 
WIRTGEN GmbH-Firmenlogo
Embedded Anwendungs-Softwareentwickler (m/w/d) - mobile Arbeitsmaschinen WIRTGEN GmbH
Windhagen (Raum Köln/Bonn) Zum Job 
B. Braun Melsungen AG-Firmenlogo
Global Lead (w/m/d) Operational Technology (OT) B. Braun Melsungen AG
Melsungen Zum Job 
WIRTGEN GmbH-Firmenlogo
Duales Studium Software Engineering - Bachelor of Engineering (m/w/d) WIRTGEN GmbH
Windhagen, Remagen Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur Vermessung (m/w/d) Die Autobahn GmbH des Bundes
Montabaur Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Lösungsentwickler (w/m/d) im Digitallabor Geoinformatik Die Autobahn GmbH des Bundes
VIAVI-Firmenlogo
Senior / Software Engineer (C++, Python & Cloud) (m/w/d) VIAVI
Eningen Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Teamleitung (w/m/d) BIM-Management Die Autobahn GmbH des Bundes
CS CLEAN SOLUTIONS GmbH-Firmenlogo
Mitarbeiter für die Steuerungstechnik Software (m/w/d) CS CLEAN SOLUTIONS GmbH
Ismaning bei München Zum Job 
Hochschule für Technik und Wirtschaft Berlin-Firmenlogo
Professur (W2) | auf Lebenszeit Fachgebiet Rechnerarchitekturen und Rechnersysteme Hochschule für Technik und Wirtschaft Berlin
Regierungspräsidium Freiburg-Firmenlogo
Manager für Building Information Modeling (BIM) (w/m/d) Bauingenieurwesen, Bauinformatik, Vermessungswesen, Geodäsie, Geoinformatik, Geomatik Regierungspräsidium Freiburg
Freiburg Zum Job 
Hochschule für Technik und Wirtschaft Berlin-Firmenlogo
Professor (W2) | Permanent Computer Architecture and Computer Systems Hochschule für Technik und Wirtschaft Berlin
Frankfurt University of Applied Sciences-Firmenlogo
Professur »Künstliche Intelligenz in Kommunikationsnetzen« (w/m/d) // Professor »Artificial Intelligence in Communication Networks Frankfurt University of Applied Sciences
Frankfurt am Main Zum Job 
FlowChief GmbH-Firmenlogo
Techniker:in Automatisierung (SCADA) (m/w/d) FlowChief GmbH
Wendelstein Zum Job 
Wirtgen GmbH-Firmenlogo
Software-Ingenieur (m/w/d) Elektrotechnik im Bereich Steuerungssoftware für mobile Arbeitsmaschinen Wirtgen GmbH
Windhagen Zum Job 
Hochschule Osnabrück-Firmenlogo
Tandem-Professur Robotik, Data Science and AI, Digitalisierte Wertschöpfungsprozesse Hochschule Osnabrück
Osnabrück, Lingen Zum Job 
Niedersachsen.next GmbH-Firmenlogo
Themenmanager Mobilität und Digitalisierung | Mobilitätskonzepte (m/w/d) Niedersachsen.next GmbH
Hannover Zum Job 
Frankfurt University of Applied Sciences-Firmenlogo
Professur "Vernetzte Eingebettete Systeme" (w/m/d) Frankfurt University of Applied Sciences
Frankfurt am Main Zum Job 
Maschinenfabrik Reinhausen GmbH-Firmenlogo
Product Owner (f/m/d) for Power Electronic Converters Maschinenfabrik Reinhausen GmbH
Regensburg Zum Job 

Dabei besteht das Netzwerk aus mehreren Schichten. In einer Zwischenschicht analysieren und bewerten die Neuronen die chaotischen, nicht-linearen Wechselwirkungen zwischen den Daten aus den Wettermessstationen und den physikalischen Zuständen der Atmosphäre in der Simulation. Auf diese Weise wollen die Wissenschaftler erreichen, dass ihr neuronales Netz selbstständig lernt, wie sich Veränderungen beispielsweise auf die Temperatur an einer bestimmten Messstation auswirken. Für die Trainingsphase nutzten die Forscher Wetterdaten aus Deutschland, die 537 Wetterstationen von 2007 bis 2016 aufzeichneten.

Neuronale Netze statt menschlicher Experten?

Natürlich haben die Wissenschaftler auch den Praxistest gemacht und ihre Prognosen mit den Wettervorhersagen verglichen, die ausschließlich mit herkömmlichen Techniken berechnet wurden. „Unser Ansatz hat für fast alle Wetterstationen deutlich genauere Vorhersagen getroffen und ist wesentlich weniger rechenaufwendig“, sagt Lerch. Aus seine Sicht liegen die Vorteile von neuronalen Netzen als Nachbearbeitungsverfahren vor allem darin, dass sie eigenständig arbeiten und ihr Wissen permanent erweitern. Zudem seien sie schnell und damit sogar gegenüber menschlichen Experten im Vorteil.

Weitere Beiträge zu künstlicher Intelligenz:

Ein Beitrag von:

  • Nicole Lücke

    Nicole Lücke macht Wissenschaftsjournalismus für Forschungszentren und Hochschulen, berichtet von medizinischen Fachkongressen und betreut Kundenmagazine für Energieversorger. Sie ist Gesellschafterin von Content Qualitäten. Ihre Themen: Energie, Technik, Nachhaltigkeit, Medizin/Medizintechnik.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.