Mit diesem Werkzeug lässt sich die Zukunft vorhersagen
Einem Forscher-Team des MIT ist es gelungen, eine benutzerfreundliche Schnittstelle für Laien zu entwickeln. Die Zutaten: Zeitreihendaten und ein leistungsstarker Algorithmus. Das Ergebnis: Mit nur wenigen Tastenanschlägen lassen sich sehr genaue Vorhersagen treffen.
Wer sich mit Vorhersagen beschäftigt, arbeitet sehr wahrscheinlich mit sogenannten Zeitreihendaten. Solche Daten sind in der Regel Beobachtungen, die über längere Zeit aufgezeichnet und gesammelt worden sind. Damit man das Wetter des nächsten Tages oder Aktienkurse vorhersagen oder das Krankheitsrisiko eines Patienten einschätzen kann, sind verschiedene Datenverarbeitungsschritte notwendig, sofern man sich dabei der Zeitreihendaten bedient. Hinzu kommen komplexe maschinelle Lernalgorithmen mit besonders steiler Lernkurve. Für Laien sind sie eher nicht geeignet.
Solar-Wetterbericht – der erste Schritt ist gemacht
Forschende am Massachusetts Institute of Technology (MIT) haben jetzt ein System entwickelt, mit dem sie diese leistungsstarken Werkzeuge benutzerfreundlicher gestalten. Diese vereinfachte Schnittstelle nennen sie Time Series Predict Database (tspDB). Diese besteht aus einer Zeitreihendatenbank mit integrierten Vorhersagefunktionen. Die gesamten komplexen Modellierungen, die notwendig sind, laufen im Hintergrund ab. Genau das macht sie auch für Laien interessant.
Werkzeug, um die Zukunft vorherzusagen, basiert auf zeitabhängigen Variablen
„Ein Grund, warum tspDB so erfolgreich ist: Es enthält einen neuartigen Zeitreihen-Vorhersagealgorithmus“, erläutert Abdullah Alomar, Doktorand der Elektrotechnik und Informatik. Er hat mit anderen Wissenschaftlerinnen und Wissenschaftlern den Algorithmus entwickelt: Er sei besonders effektiv bei der Erstellung von Vorhersagen für Zeitreihendaten mit mehreren Variablen (multivariat), bei denen es um Daten mit mehr als einer zeitabhängigen Variablen geht. Beispiel Wetterdatenbank: Sowohl Temperatur und Taupunkt als auch Bewölkung hängen von ihren vergangenen Werten ab.
„Auch wenn die Zeitreihendaten immer komplexer werden, kann dieser Algorithmus jede verfügbare Zeitreihenstruktur effektiv erfassen“, fügt Devavrat Shah hinzu, Professor für Elektrotechnik und Informatik sowie Mitglied des „Institute for Data, Systems and Society“ sowie des Labors für Informations- und Entscheidungssysteme. Der Durchbruch in ihrer Forschung gelang dem Team, als es einen besonders leistungsfähigen klassischen Algorithmus entdeckten. Der sogenannte Singular-Spectrum-Analysis-Algorithmus (SSA) imputiert einzelne Zeitreihen und sagt sie vorher. Bei der Imputation geht es darum, fehlende Werte zu ersetzen oder vergangene zu korrigieren. Da der SSA eine manuelle Parameterauswahl erforderlich macht, vermutete das Forscher-Team, dass dieser bei ihrer Schnittstelle zu effektiven Vorhersagen führen könne. Die Vermutung bestätigte sich.
Werkzeug, um die Zukunft vorherzusagen, ist ein einfaches Modell
Der Algorithmus wandelt die Zeitreihen in eine Matrix um und wendet das Matrixschätzverfahren an. Die Forschenden standen nun vor der Herausforderung, dass auch mehrere Zeitreihen verwendet werden sollten. Die Lösung fanden sie nach einigen Jahren: Sobald sie innerhalb jeder einzelnen Zeitreihe die Matrizen stapeln, können sie als eine große Matrix betrachtet und verwendet werden. Der Algorithmus kann sie damit verarbeiten. Die Wissenschaftlerinnen und Wissenschaftler gingen noch einen Schritt weiter: Die multivariate Zeitreihe kann nicht nur in eine große Matrix transformiert, sondern auch als dreidimensionaler Tensor betrachtet werden. Dadurch entstünde eine vielversprechende Verbindung zwischen dem klassischen Gebiet der Zeitreihenanalyse und der Tensorschätzung. Bei einem Tensor handelt es sich um eine Größe, die dazu dient, beispielsweise Skalen oder Vektoren in ein Schema einzuordnen, um Zusammenhänge besser beschreiben zu können.
„Ein Grund, warum ich denke, dass das so gut funktioniert: Das Modell erfasst viele Zeitreihendynamiken, ist aber am Ende des Tages immer noch ein einfaches Modell. Wer mit etwas einfachem wie diesem arbeitet, kann anstelle eines neuronalen Netzwerks, das die Daten leicht übersteuern kann, tatsächlich eine bessere Leistung erzielen“, sagt Alomar. Ziel des Teams ist es nun, diesen Algorithmus frei zugänglich zu machen. Das System könne dann in wenigen Minuten zukünftige Aktienkurse mit hoher Genauigkeit vorhersagen. Das sei auch möglich, wenn der Zeitreihendatensatz fehlende Werte enthalte.
Werkzeug, um die Zukunft vorherzusagen, soll für alle zugänglich sein
Die Forschenden haben nun einen neuen Algorithmus im Blick, den sie in tspDB integrieren wollen. Einer davon verwendet dasselbe Modell, um automatisch die Erkennung von Änderungspunkten zu aktivieren. Glaubt der Benutzer, dass seine Zeitreihen ihr Verhalten irgendwann ändern werden, erkenne das System diese Änderung automatisch und integriere sie in seine Vorhersagen. Nach den Vorstellungen der Forschenden soll tspDB als ein breit einsetzbares Open-Source-System funktionieren.
Mehr zum Thema Algorithmus:
Ein Beitrag von: