Teleportation: Wenn die Quanten im städtischen Netz herumspuken
Erstmals ist es zwei Forscherteams gelungen, Lichtteilchen in Glasfaserleitungen, die für die normale Telekommunikation benutzt werden, zu teleportieren. Die dabei übertragene Information war ohne jeden Zeitverlust beim Empfänger. Möglich macht das die Quantenmechanik, die es erlaubt, dass auch weit voneinander entfernte Teilchen ihre Zustandsinformationen austauschen. Damit ist die abhörsichere Kommunikation einen großen Schritt voran gekommen.
Für unser Jahrhundertgenie Albert Einstein war die Sache klar: „Die Quantenmechanik ist sehr achtungsgebietend. Aber eine innere Stimme sagt mir, daß das noch nicht der wahre Jakob ist. (…) Jedenfalls bin ich davon überzeugt, daß der Alte nicht würfelt“, schrieb er in einem Brief an Max Born am 4. Dezember 1926.
Es war Einstein sichtlich unwohl bei der Vorstellung des seltsamen Verhaltens der allerkleinsten Teilchen. Denn nach der Theorie der Quantenmechanik ist es möglich, Teilchen, zum Beispiel Photonen, das sind Lichtteilchen, miteinander untrennbar zu verbinden. Dadurch ist es möglich, den Schwingungszustand eines Lichtteilchens über mehrere Kilometer auf ein anderes zu übertragen, ohne dass man dafür irgendeinen Sendekanal braucht.
„Spukhafte Fernwirkung“
Verschränkung heißt diese seltsame Verbindung, die über jede Entfernung bestehen bleibt. Albert Einstein verspottete diese theoretische Möglichkeit noch als „spukhafte Fernwirkung“. Erstmals gelang es dem österreichischen Physiker Anton Zeilinger 1997, die Theorie in die Praxis zu überführen.
Er teleportierte die Eigenschaften eines Lichtteilchens einmal quer über seinen Labortisch – ohne jeden Zeitverzug. 15 Jahre später, im Jahr 2012, teleportierte er eine Information 143 Kilometer über die Luft von der Kanareninsel La Palma nach Teneriffa. Ein Meilenstein für die in Zukunft denkbare Möglichkeit der Satelliten-Quantenkommunikation.
Teleportation im Glasfasernetz gelungen
Nun ist es gleich zwei Forscherteams gelungen, die Quanten-Information durch die kilometerlangen Glasfasernetze in einer Stadt zu teleportieren. Konkret schickte ein Team um Quiang Zhang und Jian-Wei Pan von der chinesischen Technischen Universität in Shanghai ihre verschränkten Photonen über eine Entfernung von 15 Kilometern durch das Glasfasernetz von Hefei.
Ein anderes Team um den Physikprofessor Wolfgang Tittel von der Universität Calgary ließ verschränkte Photonen auf sechs Kilometern quer durch die kanadische Stadt Calgary sausen. „Uns ist die Teleportation in einem normalen Glasfasernetz gelungen, das man unter anderem fürs Telefonieren nutzt“, sagt Tittel.
„Neue Generation von Lichtsensoren“
Die Physiker hatten ihre Apparaturen im Rathaus von Calgary installiert, um von dort aus Quantenzustände in ihr Labor in der sechs Kilometer entfernten Universität zu schicken. „Möglich wurde unser Experiment erst durch eine neue Generation von Lichtsensoren, die so gut sind, dass sie neun von zehn einzelnen Photonen registrieren“ sagt Tittel. Während der Experimente blieb das öffentliche Glasfasernetz von Calgary für andere Nutzer gesperrt, weil deren Lichtsignale das Experiment viel zu stark gestört hätten.
Information ohne Zeitverzug
Prinzipiell ging das in beiden Experimenten so: Eines der verschränkten Photonen wurde zum Absender geschickt, das andere zum Empfänger. Der Absender verschränkte dann sein Photon mit einem weiteren Photon, welches die zu sendende Information trug. Und dadurch geht der Quantenzustand, und damit die Information dieses dritten Photons, auf das entfernte Photon beim Empfänger ohne jeden Zeitverzug über. Zauberei? Nein Quantenphysik und damit auch belastbar.
Schritt in Richtung abhörsicheres Quanten-Internet
Sicher ist: Diese Art der Informations-Übermittlung gilt als absolut abhörsicher. Denn jeder Abfangversuch auf der Empfängerseite wird dank der Verschränkung der Photonen auf der Senderseite sofort ohne jede Zeitverzögerung registriert. Mit den beiden jetzt erfolgreichen Teleportationen in städtischen Glasfasernetzen ist das vollkommen abhörsichere Quanten-Internet noch nicht Wirklichkeit. Aber es ist ein großes Stück realer geworden.
Schritt für Schritt arbeiten sich die Forscher voran. Hier berichten wir über Erfolge aus dem Jahr 2013 von Wissenschaftlern in Mainz, Tokio und Zürich. Und 2015 haben Forscher des Potsdamer Hasso-Plattner-Instituts ihr System Scotty vorgestellt. Es kann Objekte von A nach B beamen – mit zwei modifizierten 3D-Druckern. Sie wollen mehr wissen. Dann beamen Sie sich doch mit einem Klick auf diese Seite.
Ein Beitrag von: