Künstliche Intelligenz 12.12.2024, 07:00 Uhr

KI erklärt maschinelles Lernen für Laien

MIT-Forscher haben ein System entwickelt, das komplexe Erklärungen des maschinellen Lernens (ML) in einfach verständliche Erzählungen umwandelt. Mithilfe von fortschrittlichen Sprachmodellen (LLMs) soll das zweiteilige System Nutzenden dabei helfen, die Vorhersagen von KI-Modellen besser nachzuvollziehen und fundierte Entscheidungen zu treffen, wann sie den Ergebnissen vertrauen können.

Eine Hand mit einem Smartphone über dem ein Hologramm schwebt.

KI kann helfen, die Erklärungen von ML verständlich auszudrücken.

Foto: PantherMedia / Jirsak

Die Verbreitung von maschinellem Lernen in verschiedenen Anwendungsbereichen wirft die Frage auf, wie Menschen die oftmals komplexen Vorhersagen dieser Systeme verstehen und einordnen können. Wissenschaftlerinnen und Wissenschaftler haben deshalb Methoden entwickelt, die Nutzenden Einblicke in die Entscheidungsfindung der Modelle gewähren sollen. Allerdings sind die Erklärungen oft sehr technisch und für Laien schwer verständlich. Sie enthalten mitunter Informationen über Hunderte von Merkmalen. Um das zu umgehen, haben Forschende des Massachusetts Institute of Technology (MIT) nun einen neuen Ansatz erprobt: Sie nutzen Technologien der künstlichen Intelligenz (KI), um die komplizierten Erklärungen des maschinellen Lernens in leicht verständliche Sprache zu übersetzen. Ziel ist es, auch Nutzenden ohne Fachwissen Zugang zu den Entscheidungsprozessen der Modelle zu ermöglichen.

Künstliche Intelligenz übersetzt ML-Erklärungen in verständliche Sprache

Das von den MIT-Forschern entwickelte System, genannt EXPLINGO, besteht aus zwei Komponenten. Die erste, NARRATOR genannt, basiert auf einem leistungsstarken Sprachmodell (LLM) und ist in der Lage, Erklärungen des maschinellen Lernens in natürliche Sprache zu „übersetzen“. Dazu wandelt NARRATOR die kryptischen Erläuterungen zunächst in einen zusammenhängenden Absatz um. Durch die Eingabe beispielhafter Erklärungen können die Forschenden den Sprachstil an die Vorlieben der Nutzenden oder die Anforderungen bestimmter Anwendungen anpassen. Die zweite Komponente des Systems, GRADER, nutzt ebenfalls KI, um die Qualität der von NARRATOR erzeugten Erklärungen zu bewerten. Anhand von vier Metriken – Prägnanz, Genauigkeit, Vollständigkeit und Flüssigkeit – gibt GRADER dem Endnutzer Hinweise, inwieweit er den Erklärungen vertrauen kann.

Der Ansatz der MIT-Forschenden konzentriert sich auf eine bekannte Methode, die als SHAP (SHapley Additive exPlanations) bekannt ist. Bei SHAP wird jedem Merkmal, das in die Vorhersage eines Modells einfließt, ein spezifischer Wert zugewiesen. Dieser Wert gibt an, wie stark das jeweilige Merkmal das Gesamtergebnis beeinflusst hat – sei es in positiver oder negativer Richtung. Ein anschauliches Beispiel sind Modelle zur Prognose von Immobilienpreisen: Dabei könnte etwa der Standort einer Immobilie als wichtiges Merkmal identifiziert werden. Die SHAP-Werte werden etwa als Balkendiagramme visualisiert, um die Bedeutung der einzelnen Merkmale zu veranschaulichen. Bei Modellen mit einer Vielzahl von Merkmalen stoßen solche Diagramme aber an ihre Grenzen. Dort setzt die Idee des MIT-Teams an, die SHAP-Erklärungen mithilfe von künstlicher Intelligenz verständlich zu übersetzen.

Präzise Erklärungen durch Kombination von KI-Technologien

Anstatt die Erklärungen komplett von einem großen Sprachmodell generieren zu lassen, wählten die Forschenden einen interessanten Zwischenweg: Sie nutzen das LLM lediglich für den Part, der die Übersetzung in natürliche Sprache erfordert. Dadurch verringert sich das Risiko, dass die künstliche Intelligenz Ungenauigkeiten in die Erklärungen einbringt. NARRATOR generiert die Erläuterungen, GRADER prüft die erzeugten Erzählungen anschließend nicht nur auf ihre sprachliche Qualität, sondern gleicht sie mit den ursprünglichen SHAP-Erklärungen ab. Die Kombination dieser beiden KI-Komponenten gewährleistet hohe Präzision und gute Verständlichkeit.

Stellenangebote im Bereich Softwareentwicklung

Softwareentwicklung Jobs
Gottfried Wilhelm Leibniz Universität Hannover-Firmenlogo
Ingenieur*in (jeglichen Geschlechts; FH-Diplom oder Bachelor) der Fachrichtung Elektrotechnik oder vergleichbarer Studienrichtung Gottfried Wilhelm Leibniz Universität Hannover
Hannover Zum Job 
Deutsche Bundesbank-Firmenlogo
Elektromeister*in bzw. Staatlich geprüfte*r Elektrotechniker*in Deutsche Bundesbank
Düsseldorf Zum Job 
Hochschule Angewandte Wissenschaften München-Firmenlogo
Ingenieurin oder Ingenieur für Gebäudeautomatisierung (m/w/d) Hochschule Angewandte Wissenschaften München
München Zum Job 
Birkenstock Productions Hessen GmbH-Firmenlogo
Verantwortliche Elektrofachkraft (m/w/d) Birkenstock Productions Hessen GmbH
Steinau-Uerzell Zum Job 
TenneT TSO GmbH-Firmenlogo
Elektroingenieur für die Planung und Sicherstellung der europäischen Stromversorgung (m/w/d) TenneT TSO GmbH
Netzgesellschaft Potsdam GmbH-Firmenlogo
Ingenieur (m/w/d) Strategische Netzplanung Strom Netzgesellschaft Potsdam GmbH
Potsdam Zum Job 
Christian-Albrechts-Universität zu Kiel-Firmenlogo
Ingenieur*in der Fachrichtung Versorgungstechnik / Maschinenbau oder Elektrotechnik als Leitung des Referats -Technischer Betrieb und Service- Christian-Albrechts-Universität zu Kiel
Hochschule Angewandte Wissenschaften München-Firmenlogo
Professur für Energiewandler und Energiespeicher in der Fahrzeugtechnik (W2) Hochschule Angewandte Wissenschaften München
München Zum Job 
Haus der Technik e.V.-Firmenlogo
Fachdozent/in und Berater/in (m/w/d) für Krane und Hebezeuge in der Weiterbildung Haus der Technik e.V.
THU Technische Hochschule Ulm-Firmenlogo
W2-Professur Technische Informatik THU Technische Hochschule Ulm
Vermögen und Bau Baden-Württemberg - Amt Ulm-Firmenlogo
Ingenieur der Fachrichtung Elektrotechnik (w/m/d) Vermögen und Bau Baden-Württemberg - Amt Ulm
über ifp | Executive Search. Management Diagnostik.-Firmenlogo
Teamleiter:in Mechanical & Electrical Engineering über ifp | Executive Search. Management Diagnostik.
Emlichheim Zum Job 
Bundesamt für Strahlenschutz-Firmenlogo
Technische*r Sachbearbeiter*in (m/w/d) (Mathematik, Informatik, Physik, Ingenieurwissenschaften) im Fachgebiet "IMIS-Messtechnik" Bundesamt für Strahlenschutz
Oberschleißheim (bei München), Salzgitter, Berlin, Freiburg Zum Job 
TenneT TSO GmbH-Firmenlogo
Ingenieur als Projektleiter Leitungsbau (m/w/d) TenneT TSO GmbH
Tebis ProLeiS GmbH-Firmenlogo
MES Consultant (m/w/d) Tebis ProLeiS GmbH
Martinsried/Planegg, Erndtebrück, Aachen, Home-Office Zum Job 
Narda Safety Test Solutions GmbH'-Firmenlogo
Einkäufer für den Bereich Elektrotechnik (m/w/d) mit der Möglichkeit zur Teamleitung Narda Safety Test Solutions GmbH'
Pfullingen Zum Job 
Landeshauptstadt München-Firmenlogo
Fachbereichsleiter*in Technik (w/m/d) Landeshauptstadt München
München Zum Job 
IMS Messsysteme GmbH-Firmenlogo
Systemingenieur (m/w/i) für Oberflächeninspektion IMS Messsysteme GmbH
Heiligenhaus Zum Job 
ZVEI e.V.-Firmenlogo
Manager/in Automation (w/m/d) ZVEI e.V.
Frankfurt am Main Zum Job 
Heraeus Electronics GmbH & Co. KG-Firmenlogo
Head (m/f/d) of Global Quality Heraeus Electronics GmbH & Co. KG

Bei der Entwicklung von EXPLINGO standen die Forschenden vor einer Herausforderung: Das Sprachmodell musste so angepasst werden, dass es natürlich klingende Erzählungen erstellt, ohne die Inhalte fachlich zu verändern. Je mehr Vorgaben sie zur Steuerung des Erzählstils machten, desto größer war die Gefahr, dass das LLM Fehler in die Erklärungen einbaute. Entsprechend war ein aufwendiges Feintuning vonnöten, um jeden Fehler aufzuspüren und zu beheben. Um das System gründlich zu testen, ließ das Team verschiedene Personen zu neun Datensätzen des maschinellen Lernens eigene Erzählungen verfassen. Anhand dieser Beispiele konnten sie beurteilen, wie gut  NARRATOR unterschiedliche Schreibstile imitieren kann. Zudem setzten sie GRADER ein, um die  Erzählungen nach den definierten Metriken zu bewerten. Die Ergebnisse belegen, dass das System qualitativ hochwertige Erklärungen liefert und verschiedene Stile effektiv nachahmt.

Künstliche Intelligenz als Wegbereiter vertrauenswürdiger ML-Modelle

Die Resultate der Studie zeigen, welches Potenzial in der Kombination verschiedener KI-Technologien steckt. Schon wenige manuell erstellte Beispielerzählungen reichen aus, um die Qualität der generierten Erklärungen zu steigern. Allerdings müssen diese Beispiele mit Bedacht formuliert sein. So kann etwa die Verwendung vergleichender Begriffe dazu führen, dass GRADER eigentlich korrekte Erläuterungen als fehlerhaft einstuft. Aufbauend auf diesen Erkenntnissen wollen die Forschenden des MIT Techniken entwickeln, die dem System einen besseren Umgang mit solchen Vergleichen ermöglichen. Auch eine Erweiterung von EXPLINGO um zusätzliche Funktionen ist denkbar.

Die Möglichkeit, mit einem KI-Modell in einen Dialog über seine Entscheidungen zu treten, birgt großes Potenzial für die praktische Anwendung. Wenn Menschen die Vorhersage eines Systems anzweifeln, könnten sie durch gezielte Nachfragen schnell herausfinden, ob ihre eigene Intuition oder die des Modells zutreffend ist und worauf die Diskrepanz beruht. „Das würde bei der Entscheidungsfindung in vielerlei Hinsicht helfen“, sagt Alexandra Zytek, Hauptautorin der Studie. Die Doktorandin im Fachbereich Elektrotechnik und Informatik des MIT sieht in der Forschung einen ersten Schritt, um Nutzern ein besseres Verständnis der Funktionsweise von KI-Systemen zu vermitteln. Wenn Menschen dank leichter nachvollziehen können, wie Modelle zu ihren Prognosen gelangen, kann das dazu beitragen, Vertrauen in diese Technologie zu schaffen.

Ein Beitrag von:

  • Julia Klinkusch

    Julia Klinkusch ist seit 2008 selbstständige Journalistin und hat sich auf Wissenschafts- und Gesundheitsthemen spezialisiert. Seit 2010 gehört sie zum Team von Content Qualitäten. Ihre Themen: Klima, KI, Technik, Umwelt, Medizin/Medizintechnik.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.