Neuer Algorithmus 16.10.2023, 10:26 Uhr

Innovativer Roboterhund springt, klettert oder kriecht wie nie zuvor

Ein neuer Roboterhund der Stanford University kann zwar keinen neuen Tricks, dank eines innovativen Algorithmus kann er jedoch springen, klettern oder kriechen wie nie zuvor. Eines Tages könnte er Ersthelfer bei Erdbeben, Bränden oder Überschwemmungen sein.

Roboterhund

Der Roboterhund absolviert einen Parkour dank neuem Algorithmus so gut wie nie zuvor.

Foto: Shanghai Qi Zhi Institute/Stanford University

KI-Forscher der Stanford-University haben mit einer vereinfachten Technik des maschinellen Lernens einen Roboterhund geschaffen, der seinem lebenden Vorbild so nahe kommt wie noch nie zuvor. Ziel ist es, dass er eines Tages als Rettungshund in Erdbeben- oder Überschwemmungsgebiete oder brennende Häuser geschickt wird, um dort erste Hilfe zu leisten. Mit einem Computersichtgerät ausgestattet, könnte der batteriebetriebene Vierbeiner Hindernisse einschätzen und mit hundeähnlicher Gewandtheit überwinden.

Neuer Algorithmus macht den Roboterhunden Beine

Damit der Roboterhund eines Tages Leben retten kann, haben KI-Forscher der Stanford University und des Shanghai Qi Zhi Institute einen neuen Algorithmus entwickelt. Er soll den Robodogs dabei helfen, hohe Objekte zu erklimmen, über Abgründe zu springen, unter Schwellen hindurchzukriechen und sich durch Spalten zu zwängen. Ist die Aufgabe gemeistert, sollen sie sofort zur nächsten Herausforderung flüchten. Der Algorithmus ist hierbei das Gehirn des Roboterhundes.

„Die Autonomie und die Bandbreite der komplexen Fähigkeiten, die unser vierbeiniger Roboter erlernt hat, sind beeindruckend“, sagt Chelsea Finn, Assistenzprofessorin für Informatik und Hauptautorin eines neuen, von Experten begutachteten Papiers, das den Ansatz des Teams ankündigt und auf der kommenden Conference on Robot Learning vorgestellt wird. „Und wir haben ihn mit kostengünstigen, handelsüblichen Robotern entwickelt – eigentlich mit zwei verschiedenen handelsüblichen Robotern.“

Autonomie als entscheidender Fortschritt

Der entscheidende Fortschritt besteht laut Meinung des Forschungsteams darin, dass ihr Roboterhund autonom unterwegs ist. So sei er in der Lage, physische Herausforderungen einzuschätzen und sich eine Reihe von Beweglichkeitsfähigkeiten vorzustellen und dann auszuführen. Dabei sei ihr Robodog nicht der erste, der einen solchen „Parkour“ absolvieren könne, aber er sei der erste, der Selbstständigkeit mit einer breiten Palette von Fähigkeiten kombiniere.

Stellenangebote im Bereich Softwareentwicklung

Softwareentwicklung Jobs
Duale Hochschule Baden-Württemberg Mosbach-Firmenlogo
Ingenieur*in / Informatiker*in für Laborbetreuung und Laborübungen mit Studierenden (m/w/d) Duale Hochschule Baden-Württemberg Mosbach
Bad Mergentheim Zum Job 
Alhäuser + König Ingenieurbüro GmbH-Firmenlogo
Ingenieur:in für Elektrotechnik / Master / Bachelor /Diplom (m/w/d) Alhäuser + König Ingenieurbüro GmbH
Bonn, Hachenburg Zum Job 
TEGEL PROJEKT GMBH-Firmenlogo
Ingenieur*in als Projektsteuerer*in für Versorgungstechnik / Technische Gebäudeausrüstung (TGA) (m/w/d) TEGEL PROJEKT GMBH
Stadtwerke Rüsselsheim GmbH-Firmenlogo
Messtechniker als Spezialist Gerätemanagement Strom (m/w/d Stadtwerke Rüsselsheim GmbH
Rüsselsheim Zum Job 
Agile Robots SE-Firmenlogo
Senior Projektingenieur - Industrial Automation (m/w/d) Agile Robots SE
München Zum Job 
Hochschule für angewandte Wissenschaften Kempten-Firmenlogo
Professur (w/m/d) Elektrische Antriebstechnik Hochschule für angewandte Wissenschaften Kempten
Kempten Zum Job 
PFISTERER Kontaktsysteme GmbH-Firmenlogo
High Voltage Testing Specialist (w/m/d) PFISTERER Kontaktsysteme GmbH
Winterbach Zum Job 
Sanofi-Aventis Deutschland GmbH-Firmenlogo
Ingenieur-Trainee in der Pharmazeutischen Produktion - all genders Sanofi-Aventis Deutschland GmbH
Frankfurt am Main Zum Job 
naturenergie netze GmbH-Firmenlogo
Teamleiter (m/w/d) Netzentwicklung naturenergie netze GmbH
Rheinfelden (Baden) Zum Job 
Broadcast Solutions GmbH-Firmenlogo
Elektroingenieur* in Vollzeit (m/w/d) Broadcast Solutions GmbH
B. Braun SE-Firmenlogo
Senior Prozess Experte (w/m/d) Abfüllung B. Braun SE
Melsungen Zum Job 
Truma Gerätetechnik GmbH & Co. KG-Firmenlogo
Product Compliance Officer (m/w/d) Truma Gerätetechnik GmbH & Co. KG
Putzbrunn Zum Job 
Stadtwerke Weimar Stadtversorgungs-GmbH-Firmenlogo
Planungsingenieur (m/w/d) Fernwärme Stadtwerke Weimar Stadtversorgungs-GmbH
IMS Messsysteme GmbH-Firmenlogo
Elektrotechnikingenieur/-techniker (m/w/i) für die Prüfung von Messsystemen IMS Messsysteme GmbH
Heiligenhaus Zum Job 
Propan Rheingas GmbH & Co. KG-Firmenlogo
Senior Energieberater (m/w/d) Propan Rheingas GmbH & Co. KG
Die Autobahn GmbH des Bundes-Firmenlogo
Projektingenieur (w/m/d) mit Schwerpunkt Tunnelbetrieb Die Autobahn GmbH des Bundes
STOPA Anlagenbau GmbH-Firmenlogo
Ingenieur / Techniker (m/w/d) Elektrotechnik / Automatisierungstechnik für Inbetriebnahme Außendienst (Elektrotechniker, Maschinenbauingenieur o. ä.) STOPA Anlagenbau GmbH
Achern-Gamshurst Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Projektingenieur (w/m/d) Elektrotechnik Die Autobahn GmbH des Bundes
Hamburg Zum Job 
Steinmeyer Mechatronik GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) Steinmeyer Mechatronik GmbH
Dresden Zum Job 
AbbVie Deutschland GmbH & Co. KG-Firmenlogo
Senior Project Engineer - Capital Investments (all genders) AbbVie Deutschland GmbH & Co. KG
Ludwigshafen am Rhein Zum Job 

„Wir kombinieren Wahrnehmung und Steuerung, indem wir Bilder von einer am Roboter angebrachten Tiefenkamera und maschinelles Lernen verwenden, um all diese Eingaben zu verarbeiten und die Beine zu bewegen, um über, unter und um Hindernisse herumzukommen“, so Zipeng Fu, Doktorandin in Finns Labor und Erstautorin der Studie, zusammen mit Ziwen Zhuang vom Shanghai Qi Zhi Institute.

Fu weiter: „Unsere Roboter haben sowohl Vision als auch Autonomie – die sportliche Intelligenz, um eine Herausforderung einzuschätzen und Parkour-Fähigkeiten je nach den Anforderungen des Augenblicks selbst auszuwählen und auszuführen.“

Unterschied zu bestehenden Lernmethoden

Bestehende Lernmethoden für Roboterhunde sind oft komplex und auf bestimmte Umgebungen zugeschnitten. Daher lassen sie sich schlecht auf neue Umgebungen übertragen. Bei anderen Ansätzen lernen die Roboterhunde anhand von Daten aus der realen Welt. Diese Methoden sind jedoch rechenintensiv und die Hunde haben eine eingeschränkte Bewegungspalette.

Die neue Open-Source-Anwendung des Forschungsteams verwendet ein einfaches Belohnungssystem und keine realen Referenzdaten. Sie erreicht damit eine breite Palette von Fähigkeiten und ist schneller als bestehende Methoden, schreiben die Autoren in der Studie.

Algorithmus lernt, wie er am besten an neue Aufgaben herangeht

Um Roboterhunden das Parkour-Können beizubringen, haben Forscher einen neuen Algorithmus entwickelt. Dieser Algorithmus wurde zunächst an einem Computermodell getestet und dann auf zwei reale Roboterhunde übertragen.

Im nächsten Schritt wurden die Roboterhunde in einem Prozess namens Verstärkungslernen trainiert. Dabei versuchten sie sich auf jede erdenkliche Weise vorwärts zu bewegen und wurden je nach Erfolg belohnt. So lernte der Algorithmus schließlich, wie er den Hunden das Parkour-Können am besten beibringt.

Der neue Algorithmus ist besonders effektiv, weil er ein einfaches Belohnungssystem verwendet. Dies macht ihn nicht nur schneller, sondern auch einfacher zu implementieren als bestehende Methoden. „Es ist eigentlich ziemlich einfach“, sagt Finn. „Wir richten uns hauptsächlich danach, wie weit sich der Roboter vorwärts bewegt und wie viel Kraft er dafür aufwendet. Mit der Zeit erlernt der Roboter komplexere motorische Fähigkeiten, die es ihm ermöglichen, voranzukommen.“

Tests in der realen Welt

Den neuen Algorithmus testeten die Forschenden abschließend mit echten Roboterhunden in der realen Welt. Ziel war es, ihre Agilität in besonders schwierigen Umgebungen zu demonstrieren. Zum Einsatz kamen hierbei lediglich handelsübliche Computer, visuelle Sensoren und Energiesysteme der Robodogs.

Die Roboterhunde zeigten, dass sie auf Hindernisse klettern konnten, die eineinhalb Mal so groß wie sie waren. Sie konnten zudem über Lücken springen, die mehr als das Anderthalbfache ihrer Länge betrugen. Zudem krochen sie unter Hindernissen hindurch, die lediglich drei Viertel ihrer Höhe betrugen. Nicht zuletzt konnten sich die Roboterhunde neigen, um durch Schlitze zu kommen, die dünner als ihre Breite war.

Auch interessant:

In Zukunft plant das Forschungsteam, den Algorithmus zu verbessern, indem es reale Daten zu den simulierten Umgebungen hinzufügt. Dies würde den Algorithmus noch autonomer machen und ihm ermöglichen, in der realen Welt noch schwierigere Aufgaben zu bewältigen. Dabei möchte es die Fortschritte in der 3D-Vision und -Grafik nutzen.

Ein Beitrag von:

  • Dominik Hochwarth

    Redakteur beim VDI Verlag. Nach dem Studium absolvierte er eine Ausbildung zum Online-Redakteur, es folgten ein Volontariat und jeweils 10 Jahre als Webtexter für eine Internetagentur und einen Onlineshop. Seit September 2022 schreibt er für ingenieur.de.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.